Search results for "instrumentation:miscellaneous"

showing 1 items of 1 documents

A precise photometric ratio via laser excitation of the sodium layer - I. One-photon excitation using 342.78 nm light

2020

The largest uncertainty on measurements of dark energy using type Ia supernovae is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength in the optical spectrum. We show that a precise constraint on relative photometry between the visible and near-infrared can be achieved in upcoming surveys (such as in LSST at the Vera C. Rubin Observatory) via a mountaintop-located laser source tuned to the 342.78 nm vacuum excitation wavelength of neutral sodium atoms. Using a high-power (500 W) laser modified from laser guide star studies, this excitation will produce an artificial star (which we term a "laser photometric ratio s…

PhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicslaw.inventionPhotometry (optics)techniques: photometricOpticslawAstrophysics::Solar and Stellar Astrophysicsdark energyInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsPhysicsbusiness.industrymethods:observationalAstrophysics::Instrumentation and Methods for AstrophysicsSodium layerAstronomy and AstrophysicstelescopesLaser[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]instrumentation: miscellaneousWavelengthLaser guide starSpace and Planetary Science[SDU]Sciences of the Universe [physics]instrumentation:miscellaneousmethods: observationalbusinesstechniques:photometricAstrophysics - Instrumentation and Methods for AstrophysicsExcitationVisible spectrumAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct