Search results for "interpolation."

showing 10 items of 253 documents

On the construction of Ljusternik-Schnirelmann critical values in banach spaces

1991

w h e r e f a n d g are functionals on a Banach space X, are considered in many papers. The existence theorems are based on the existence of a critical vector with respect to the manifold M,={xEX: f(x)=r}. Morse theory can often be used to obtain precise information about the behaviour of the functional close to the critical level. However, this would limit the study to Hilbert spaces and functions with nondegenerate critical points. These assumptions are not always satisfied in applications and are not rleeded when applying the Ljusternik--Schnirelmann theory. Therefore, Ljusternik--Schnirelmann theory has been widely used to study various nonlinear eigenvalue problems. Very general result…

Discrete mathematicsGeneral MathematicsEberlein–Šmulian theoremInfinite-dimensional vector functionBanach spaceInterpolation spaceUniformly convex spaceBanach manifoldLp spaceReflexive spaceMathematicsActa Mathematica Hungarica
researchProduct

Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces

1997

When dealing with vector-valued functions, sometimes is rather difficult to give non trivial examples, meaning examples which do not come from tensoring scalar-valued functions and vectors in the Banach space, belonging to certain classes. This is the situation for vector valued BMO. One of the objectives of this paper is to look for methods to produce such examples. Our main tool will be the vector-valued extension of the following result on multipliers, proved in [MP], which says that the space of multipliers between H and BMOA can be identified with the space of Bloch functions B, i.e. (H, BMOA) = B (see Section 3 for notation), which, in particular gives that g ∗ f ∈ BMOA whenever f ∈ H…

Discrete mathematicsGeneral MathematicsInfinite-dimensional vector functionBanach space46J15Banach manifoldHardy space30G30Bounded mean oscillationBounded operatorsymbols.namesake46B2046E40symbolsInterpolation space46B28Lp spaceMathematics
researchProduct

Sobolev classes of Banach space-valued functions and quasiconformal mappings

2001

We give a definition for the class of Sobolev functions from a metric measure space into a Banach space. We give various characterizations of Sobolev classes and study the absolute continuity in measure of Sobolev mappings in the “borderline case”. We show under rather weak assumptions on the source space that quasisymmetric homeomorphisms belong to a Sobolev space of borderline degree; in particular, they are absolutely continuous. This leads to an analytic characterization of quasiconformal mappings between Ahlfors regular Loewner spaces akin to the classical Euclidean situation. As a consequence, we deduce that quasisymmetric maps respect the Cheeger differentials of Lipschitz functions …

Discrete mathematicsMathematics::Complex VariablesGeneral MathematicsEberlein–Šmulian theoremMathematics::Analysis of PDEsSobolev inequalitySobolev spaceMathematics::Metric GeometryBesov spaceInterpolation spaceBirnbaum–Orlicz spaceMetric differentialAnalysisMathematicsTrace operator
researchProduct

Norm, essential norm and weak compactness of weighted composition operators between dual Banach spaces of analytic functions

2017

Abstract In this paper we estimate the norm and the essential norm of weighted composition operators from a large class of – non-necessarily reflexive – Banach spaces of analytic functions on the open unit disk into weighted type Banach spaces of analytic functions and Bloch type spaces. We also show the equivalence of compactness and weak compactness of weighted composition operators from these weighted type spaces into a class of Banach spaces of analytic functions, that includes a large family of conformally invariant spaces like BMOA and analytic Besov spaces.

Discrete mathematicsMathematics::Functional AnalysisApplied MathematicsTopological tensor product010102 general mathematicsEberlein–Šmulian theoremWeakly compact operatorBloch type spaceBanach manifoldFinite-rank operator01 natural sciences010101 applied mathematicsEssential normWeighted spaces of analytic functionsFréchet spaceWeighted composition operatorInterpolation spaceBirnbaum–Orlicz space0101 mathematicsLp spaceAnalysisMathematics
researchProduct

The Bishop–Phelps–Bollobás property for operators from c0 into some Banach spaces

2017

Abstract We exhibit a new class of Banach spaces Y such that the pair ( c 0 , Y ) has the Bishop–Phelps–Bollobas property for operators. This class contains uniformly convex Banach spaces and spaces with the property β of Lindenstrauss. We also provide new examples of spaces in this class.

Discrete mathematicsMathematics::Functional AnalysisApproximation propertyApplied Mathematics010102 general mathematicsEberlein–Šmulian theoremBanach spaceUniformly convex spaceBanach manifoldFinite-rank operator01 natural sciences010101 applied mathematicsCombinatoricsInterpolation space0101 mathematicsLp spaceAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

The Fixed Point Property in Banach Spaces with the NUS-Property

1997

Abstract In this paper, we show that the weak nearly uniform smooth Banach spaces have the fixed point property for nonexpansive mappings.

Discrete mathematicsMathematics::Functional AnalysisApproximation propertyApplied MathematicsEberlein–Šmulian theoremMathematics::Optimization and ControlBanach spaceBanach manifoldFixed-point propertyOpial propertyInterpolation spaceLp spaceAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Injective spaces of real-valued functions with the baire property

1995

Generalizing the technique used by S.A. Argyros in [3], we give a lemma from which certain Banach spaces are shown to be non-injective. This is applied mainly to study the injectivity of spaces of real-valued Borel functions and functions with the Baire property on a topological space. The results obtained in this way do not follow from previous works about this matter.

Discrete mathematicsMathematics::Functional AnalysisFréchet spaceGeneral MathematicsTopological tensor productMathematics::General TopologyInterpolation spaceBaire category theoremOpen mapping theorem (functional analysis)Baire measureTopological vector spaceComplete metric spaceMathematicsIsrael Journal of Mathematics
researchProduct

Boundaries for algebras of analytic functions on function module Banach spaces

2013

We consider the uniform algebra of continuous and bounded functions that are analytic on the interior of the closed unit ball of a complex Banach function module X. We focus on norming subsets of , i.e., boundaries, for such algebra. In particular, if X is a dual complex Banach space whose centralizer is infinite-dimensional, then the intersection of all closed boundaries is empty. This also holds in case that X is an -sum of infinitely many Banach spaces and further, the torus is a boundary.

Discrete mathematicsMathematics::Functional AnalysisGeneral MathematicsUniform algebraSpectrum (functional analysis)Interpolation spaceFinite-rank operatorBanach manifoldInfinite-dimensional holomorphyC0-semigroupLp spaceMathematicsMathematische Nachrichten
researchProduct

Strict u-ideals in Banach spaces

2009

We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition X = X X ? is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c0. We also show that '1 is not a u-ideal.

Discrete mathematicsMathematics::Functional AnalysisMathematics::Commutative AlgebraApproximation propertyGeneral MathematicsEberlein–Šmulian theoremInfinite-dimensional vector functionBanach spaceInterpolation spaceBanach manifoldC0-semigroupLp spaceMathematicsStudia Mathematica
researchProduct

Property (M) and the weak fixed point property

1997

It is shown that in Banach spaces with the property (M) of Kalton, nonexpansive self mappings of nonempty weakly compact convex sets necessarily have fixed points. The stability of this conclusion under renormings is examined and conditions for such spaces to have weak normal structure are considered.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsApproximation propertyApplied MathematicsGeneral MathematicsTopological tensor productEberlein–Šmulian theoremBanach spaceUniformly convex spaceFixed-point propertyOpial propertyInterpolation spaceMathematicsProceedings of the American Mathematical Society
researchProduct