Search results for "ion exchange membrane"

showing 10 items of 35 documents

Integrated modelling of membrane deformation, fluid dynamics and mass transfer in electromembrane processes

In recent years, water and energy supply issues have drawn the attention of the scientific community to electromembrane processes. Electrodialysis (ED) and Reverse Electrodialysis (RED) are two of the most attractive electromembrane technologies for water desalination and electric energy production from salinity gradients, respectively. In order to gain an important place in the industrial market, technological challenges on various aspects are involved in the optimization of these processes. In this context, profiled membranes exhibit interesting performance. However, the mechanical behavior of the membranes and its interaction with fluid dynamics has been poorly investigated so far. In me…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicielectrodialysifluid-structure interactionmembrane deflectionCFDreverse electrodialysiSettore ING-IND/19 - Impianti NucleariIon exchange membrane
researchProduct

Review of the Hydrogen Evolution Reaction—A Basic Approach

2021

An increasing emphasis on energy storage has resulted in a surge of R&D efforts into producing catalyst materials for the hydrogen evolution reaction (HER) with emphasis on decreasing the usage of platinum group metals (PGMs). Alkaline water electrolysis holds promise for satisfying future energy storage demands, however the intrinsic potential of this technology is impeded by sluggish reaction kinetics. Here, we summarize the latest efforts within alkaline HER electrocatalyst design, where these efforts are divided between three catalyst design strategies inspired by the three prevailing theories describing the pH-dependence of the HER activity. Modifying the electronic structure of a …

TechnologyControl and OptimizationRenewable Energy Sustainability and the EnvironmentTalkaline hydrogen evolution reactionEnergy Engineering and Power Technologyalkaline HERwater electrolysisVDP::Matematikk og Naturvitenskap: 400::Geofag: 450anion exchange membrane electrolysisElectrical and Electronic EngineeringAEM electrolysisEngineering (miscellaneous)catalyst materialsEnergy (miscellaneous)
researchProduct

Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes

2019

In the membrane processes, a trans-membrane pressure (TMP) may arise due to design features or operating conditions. In most applications, stacks for electrodialysis (ED) or reverse electrodialysis (RED) operate at low TMP (&lt

Work (thermodynamics)Chemical Phenomenareverse electrodialysis02 engineering and technologyCFD; electrodialysis; fluid-structure interaction; ion exchange membrane; mass transfer; pressure drop; profiled membrane; reverse electrodialysis; structural mechanics;Physical Phenomenalcsh:ChemistryFluid dynamicsBiology (General)lcsh:QH301-705.5SpectroscopyGeneral MedicineMechanicsElectrodialysis021001 nanoscience & nanotechnologyComputer Science ApplicationsChemistry0210 nano-technologyTransport phenomenaCFDreverse electrodialysiion exchange membraneSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceQH301-705.5fluid-structure interactionComputational fluid dynamicsDeformation (meteorology)CatalysisArticleInorganic Chemistry020401 chemical engineeringstructural mechanicsReversed electrodialysisMass transfermass transferstructural mechanic0204 chemical engineeringPhysical and Theoretical ChemistryelectrodialysisMolecular BiologyQD1-999Settore ING-IND/19 - Impianti NucleariMechanical Phenomenapressure dropprofiled membranebusiness.industryOrganic ChemistryMembranes Artificiallcsh:Biology (General)lcsh:QD1-999electrodialysiHydrodynamicsbusinessSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Determination of limiting current density and current efficiency in electrodialysis units

2018

Abstract A crucial parameter for the design and operation of electrodialysis (ED) units is the limiting current density (LCD). This is often identified with the diffusion-limited current density, which corresponds to the complete solute depletion in the layer adjacent to the membrane. Current-voltage curves obtained from measurements with electrodes in contact with the solution (i.e. without membranes) are consistent with this interpretation and exhibit a horizontal plateau identifying LCD. However, real ED systems show more complex behaviours, with a reduced-slope tract instead of a plateau and a third region in which the current increases more markedly (overlimiting current). The phenomen…

Work (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Chemical Engineering02 engineering and technologyPlateau (mathematics)Electrodialysi020401 chemical engineeringGeneral Materials ScienceChemical Engineering (all)0204 chemical engineeringDiffusion (business)Concentration polarizationSettore ING-IND/19 - Impianti NucleariConcentration polarizationIon exchange membraneWater Science and TechnologyMechanical EngineeringChemistry (all)Limiting currentGeneral ChemistryMechanicsElectrodialysis021001 nanoscience & nanotechnologyLimiting current densityCurrent efficiencyMaterials Science (all)Current (fluid)0210 nano-technologyCurrent densityDesalination
researchProduct

Electrodialysis for wastewater treatment—Part I: Fundamentals and municipal effluents

2020

Abstract Selectivity, high recovery, and chemical-free operation are strengths of electrodialysis. Different configurations have been proposed for several applications. Effluents from municipal wastewater treatment plants (including sludge and supernatants), desalination plants, and animal farms can be treated for recovering water, nutrients, salts, and acids/bases. Although many applications are technoeconomically feasible and competitive with other zero liquid discharge systems, only a few real plants have been installed. However, the research is currently very active, thus paving the way for a widespread use at large scale in the next future.

Zero liquid dischargeSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciBrineWaste managementElectrodialysisDesalinationZero liquid dischargeElectromembrane processWastewaterBipolar membraneEnvironmental scienceSewage treatmentEffluentIon exchange membrane
researchProduct

Electrodialysis for wastewater treatment-part II: Industrial effluents

2020

Abstract Electrodialysis and related processes have huge potential in the treatment of effluents from a variety of industrial processes. They can recover water and other valuable products, including heavy metal ions, acids and bases, nutrients, and organics. In recent years, novel and improved systems have been continuously developed as a result of research in the field, showing that the (near) zero liquid discharge approach can be affordable in several industrial applications. A larger market share is expected in the near future.

Zero liquid dischargeWater reuseSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWaste managementBipolar membraneEnvironmental scienceSewage treatmentElectrodialysisElectrodeionizationEffluentZero liquid dischargeIon exchange membrane
researchProduct

Neutralization of acid and base solutions by Reverse Electrodialysis with Bipolar Membranes: a sustainable way to recover energy

2020

The large amount of acidic wastewaters produced in various industrial processes can have a large economic and environmental impact. Companies producing waste acid solutions have to send them to specific sites for the neutralization with alkaline solutions. However, efforts have been devoted so far to promote the acid recovery or its reuse. In the perspective of a more circular manufacturing approach, the present work proposes for the first time the use of the novel Bipolar Membrane Reverse Electrodialysis technology as a viable on-site way to convert the chemical energy associated to the pH gradient of waste acid/base solutions into electrical energy. Bipolar Membrane Reverse Electrodialysi…

energy productionion exchange membraneSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/23 - Chimica Fisica Applicatabiplar membraneWastewater valorizationreverse electrodialysis.acid recovery
researchProduct

Pressure-Induced Deformation of Pillar-Type Profiled Membranes and Its Effects on Flow and Mass Transfer

2019

In electro-membrane processes, a pressure difference may arise between solutions flowing in alternate channels. This transmembrane pressure (TMP) causes a deformation of the membranes and of the fluid compartments. This, in turn, affects pressure losses and mass transfer rates with respect to undeformed conditions and may result in uneven flow rate and mass flux distributions. These phenomena were analyzed here for round pillar-type profiled membranes by integrated mechanical and fluid dynamics simulations. The analysis involved three steps: (1) A conservatively large value of TMP was imposed, and mechanical simulations were performed to identify the geometry with the minimum pillar density…

ion exchange membraneMass fluxSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Computer Sciencereverse electrodialysisFlow (psychology)fluid-structure interaction02 engineering and technologyDeformation (meteorology)Computational fluid dynamicsElectrodialysilcsh:QA75.5-76.95Theoretical Computer Sciencestructural mechanics020401 chemical engineeringMass transferReverse electrodialysimass transferFluid dynamicselectrodialysis0204 chemical engineeringSettore ING-IND/19 - Impianti Nuclearipressure dropprofiled membranebusiness.industryApplied MathematicsMechanics021001 nanoscience & nanotechnologyVolumetric flow rateMembraneModeling and Simulationlcsh:Electronic computers. Computer scienceSettore ICAR/08 - Scienza Delle CostruzioniCFD0210 nano-technologybusinessComputation
researchProduct

A Study of Osmosis Rate Through Several Proton Conducting Polymer Composite Membranes

2021

Carbon dioxide is typically considered to be a byproduct of various industrial processes that should not be released into the environment due to its nature as a harmful greenhouse gas. One of the more promising ways to dispose of it in an economical and environmentally friendly way is by using it as a raw material in electrochemical synthesis reactors. An important part of such reactors is an ion exchange membrane. In this study the influence of ZrO2 content in SPEEK – ZrO2 composite membranes on rate of osmosis trough them was investigated, with the goal of evaluating ZrO2 as an additive for making ion exchange membranes with fine-tuned osmotic permeability.

ion exchange membraneMaterials science020209 energy02 engineering and technologyRaw materialOsmosis7. Clean energy12. Responsible consumptionchemistry.chemical_compound0203 mechanical engineeringcomposite membrane0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceConductive polymerMining engineering. MetallurgyIon exchangeTN1-997Environmentally friendlysulfonated polyetheretherketonePermeability (earth sciences)020303 mechanical engineering & transportsMembranechemistryChemical engineering13. Climate actionCarbon dioxidezirconium dioxideosmosisMaterials Science
researchProduct

Performance analysis of the first Reverse Electrodialysis prototype plant operating with natural brackish water and salt pond brine

2014

Reverse Electrodialysis (RED) has gained a strong interest among the salinity gradient energy technologies during the last years. Recently, notable improvements have been reached in terms of membranes and stack performances using artificial solutions. However, the use of real saline solutions strongly affects the process performance, requiring additional R&D efforts for a successful scale-up of such technology. This work focuses on the experimental campaign performed on the first RED prototype plant fed with real brackish water and saltworks brine. The plant is located within the Ettore e Infersa saltworks in Marsala (TP, South of Italy). It is the final accomplishment of the REAPower proje…

ion exchange membraneSalinity Gradient Power; RED; brackish water; brine; ion exchange membraneREDSalinity Gradient Powerbrackish waterbrine
researchProduct