Search results for "isobar"
showing 10 items of 210 documents
Photoproduction of η and η′ mesons with EtaMAID
2016
The unitary isobar model EtaMAID has been updated with an extended list of nucleon resonances, fitted to recent and new data for differential cross sections and polarization observables. The nonresonant background is described by Regge trajectories of ω,ρ and a 1 , b 1 mesons and in addition Regge cuts, where vector and axial vector mesons are exchanged together with Pomeron and f 2 mesons.
Recent results in double beta decay
2015
Abstract Nuclear matrix elements for 0νββ, 0νhββ, and 2νββ decay in the microscopic interacting boson model (IBM-2) with isospin restoration are given for all nuclei of interest from 48Ca to 238U.
Elementary theory and brief history
1991
In the history of the theory of deuteron photodisintegration one may distinguish roughly three periods: (i) the primitive period of the elementary theory using very simple wave functions and forces and considering lowest multipoles (E1, M1) only, (ii) the classical period still in the framework f conventional nuclear physics, but using realstic forces with correspondingly elaborate wave functions and considering also higher multipole transitions, (ii) the post-classic period with explicit treatment of subnuclear degrees of freedom like meson and isobar degrees of freedom and very recently quark-gluon degrees of freedom.
Measurement of the Longitudinal, Transverse, and Longitudinal-Transverse Structure Functions in theH2(e,e′p)nReaction
1996
We have separated the longitudinal ({ital f}{sub 00}), transverse ({ital f}{sub 11}), and longitudinal-transverse interference ({ital f}{sub 01}) structure functions in the {sup 2}H({ital e},{ital e}{prime}{ital p}){ital n} reaction at {ital q}{searrow}{parallel}{approx_equal} 400 MeV/{ital c} and {omega}{approx_equal}110 MeV. A nonrelativistic calculation which includes effects due to final state interactions, meson exchange currents, and isobar configurations agrees with the measured {ital f}{sub 11} and {ital f}{sub 01} but overpredicts {ital f}{sub 00} by 25{percent} (2{sigma}). The data are also compared to the results of previous structure function measurements. {copyright} {ital 1996…
Mean-Field Calculation Based on Proton-Neutron Mixed Energy Density Functionals
2015
We have performed calculations based on the Skyrme energy density functional (EDF) that includes arbitrary mixing between protons and neutrons. In this framework, single-particle states are generalized as mixtures of proton and neutron components. The model assumes that the Skyrme EDF is invariant under the rotation in isospin space and the Coulomb force is the only source of the isospin symmetry breaking. To control the isospin of the system, we employ the isocranking method, which is analogous to the standard cranking approach used for describing high-spin states. Here, we present results of the isocranking calculations performed for the isobaric analog states in A = 40 and A = 54 nuclei.
Isobaric vapor-liquid equilibria for binary and ternary systems composed of water, 1-propanol, and 2-propanol at 100 kPa
1996
Isobaric vapor−liquid equilibria data were obtained for the 2-propanol + 1-propanol binary system and the water + 1-propanol + 2-propanol ternary system at 100 kPa. The data were found to be thermodynamically consistent according to the Van Ness−Byer−Gibbs method for the binary system and according to the McDermott−Ellis method for the ternary one. The binary system is well represented by assuming ideal behavior. The binary interaction parameters obtained from this and our previous work are used to predict the vapor−liquid equilibrium for the ternary system using the UNIQUAC, NRTL, and Wilson models. The ternary system is well predicted from binary data.
Isobaric Vapor−Liquid Equilibria for the Binary System 3-Methylpentane + Ethanol and for the Ternary System 2-Methyl-2-propanol + Ethanol + 3-Methylp…
2000
Isobaric vapor-liquid equilibria data were measured for the 3-methylpentane + ethanol binary system and 2-methyl-2-propanol + ethanol + 3-methylpentane ternary system at 101.3 kPa in a temperature range from 329 to 356 K. The data were found to be thermodynamically consistent according to the Van Ness-Byer-Gibbs method for the binary system and according to the McDermott-Ellis method for the ternary one. The binary system shows a minimum boiling azeotrope that boils at 327.9 K and contains 71.4 mol % 3-methylpentane. The binary interaction parameters obtained from this work and literature data are used to predict the vapor-liquid equilibrium for the ternary system using the UNIQUAC, NRTL, a…
Identification of Trans-Golgi Network Proteins in Arabidopsis thaliana Root Tissue
2014
Knowledge of protein subcellular localization assists in the elucidation of protein function and understanding of different biological mechanisms that occur at discrete subcellular niches. Organelle-centric proteomics enables localization of thousands of proteins simultaneously. Although such techniques have successfully allowed organelle protein catalogues to be achieved, they rely on the purification or significant enrichment of the organelle of interest, which is not achievable for many organelles. Incomplete separation of organelles leads to false discoveries, with erroneous assignments. Proteomics methods that measure the distribution patterns of specific organelle markers along densit…
QRPA estimate for the Δ (1232) contribution to the Gamow-Teller decay of heavy nuclei
1991
Abstract The contribution of the Δ (1232) isobars to the nuclear beta decay strength function is estimated in the framework of the charge-changing form of the QRPA. This procedure is applied to neutron-deficient tin isotopes. The results imply that the quenching of the low-energy Gamow-Teller decay strength cannot attributed to the presence of delta admixtures in the nuclear wave function.
Penning trap for isobaric mass separation at IGISOL
2003
Abstract A cylindrical Penning trap has been built at the ion guide isotope separator facility IGISOL of the University of Jyvaskyla. The main goal of the Penning trap application is to purify low-energy radioactive ion beams. The aim is to make isobarically pure beams. The technical description is presented.