Search results for "isoforms"

showing 10 items of 185 documents

Effects of cold acclimation and dsRNA injections on Gs1l gene splicing in Drosophila montana

2017

Abstract Alternative splicing, in which one gene produce multiple transcripts, may influence how adaptive genes respond to specific environments. A newly produced transcriptome of Drosophila montana shows the Gs1-like (Gs1l) gene to express multiple splice variants and to be down regulated in cold acclimated flies with increased cold tolerance. Gs1l’s effect on cold tolerance was further tested by injecting cold acclimated and non-acclimated flies from two distantly located northern and southern fly populations with double stranded RNA (dsRNA) targeting Gs1l. While both populations had similar cold acclimation responses, dsRNA injections only effected the northern population. The nature of …

cold resistancemahlakärpäsetAcclimatizationlcsh:MedicineacclimationArticleInjectionskylmänkestävyysNucleotidasesAnimalsDrosophila ProteinsHumansProtein IsoformsDrosophilidaegeneslcsh:ScienceRNA Double-StrandedgeenitSequence Homology Amino Acidfungilcsh:RProteinsCold ClimateakklimatisaatioAlternative SplicingRNADrosophilalcsh:QScientific Reports
researchProduct

Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform

2017

Small interfering RNAs (siRNAs) are widely used to study gene function and extensively exploited for their potential therapeutic applications. HIPK2 is an evolutionary conserved kinase that binds and phosphorylates several proteins directly or indirectly related to apoptosis. Recently, an alternatively spliced isoform skipping 81 nucleotides of exon 8 (Hipk2-Δe8) has been described. Selective depletion of Hipk2 full-length (Hipk2-FL) with a specific siRNA that spares the Hipk2-Δe8 isoform has been shown to strongly induce apoptosis, suggesting an unpredicted dominant-negative effect of Hipk2-FL over the Δe8 isoform. From this observation, we sought to take advantage and assessed the therape…

0301 basic medicineGene isoformMaleProgrammed cell deathSmall interfering RNACell SurvivalBlotting WesternMice Nudecolorectal cancerApoptosisHIPK2BiologyProtein Serine-Threonine KinasesGene Expression Regulation Enzymologic03 medical and health sciencesExonRNA interferenceCell Line TumorAnimalsHumansViability assayoff-target effectCell Line TransformedSettore MED/04 - Patologia GeneraleKinaseReverse Transcriptase Polymerase Chain ReactionAlternative splicingalternative splicing isoformoff-target effectsExonsHCT116 CellsMolecular biologyXenograft Model Antitumor AssaysCell biologyGene Expression Regulation NeoplasticIsoenzymesAlternative Splicing030104 developmental biologyRNAi TherapeuticsOncologyalternative splicing isoformsNeoplastic Stem CellsRNA InterferenceHIPK2; alternative splicing isoforms; colorectal cancer; off-target effects; siRNA therapeutic applicationsiRNA therapeutic applicationCarrier ProteinsColorectal NeoplasmsGene DeletionResearch Paper
researchProduct

One precursor, three apolipoproteins: The relationship between two crustacean lipoproteins, the large discoidal lipoprotein and the high density lipo…

2014

The novel discoidal lipoprotein (dLp) recently detected in the crayfish, differs from other crustacean lipoproteins in its large size, apoprotein composition and high lipid binding capacity, We identified the dLp sequence by transcriptome analyses of the hepatopancreas and mass spectrometry. Further de novo assembly of the NGS data followed by BLAST searches using the sequence of the high density lipoprotein/1-glucan binding protein (HDL-BGBP) of Astacus leptodactylus as query revealed a putative precursor molecule with an open reading frame of 14.7 kb and a deduced primary structure of 4889 amino acids. The presence of an N-terminal lipid bind- ing domain and a DUF 1943 domain suggests the…

Sequence analysisLipoproteinsBlotting WesternMolecular Sequence DataHepatopancreasSequence alignmentBiologyMass SpectrometryProtein structureCrustaceaHemolymphLectinsAnimalsProtein IsoformsAmino Acid SequenceMolecular BiologyPeptide sequenceFurinBinding proteinProtein primary structureSequence Analysis DNACell BiologyImmunohistochemistryProtein Structure TertiaryApolipoproteinsBiochemistrybiology.proteinlipids (amino acids peptides and proteins)Carrier ProteinsLipoproteins HDLSequence AlignmentPlant lipid transfer proteinsBiochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
researchProduct

Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells

2016

Summary Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs) sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5) are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca2+-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND), a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent wit…

0301 basic medicineAmino Acid Transport Systemsheavy-chainmedicine.medical_treatmentInsulinsamino acid transporter0302 clinical medicinegenetics [Drosophila Proteins]cytology [Drosophila melanogaster]Glutamate DehydrogenaseHemolymphInsulin-Secreting Cellsmetabolism [Drosophila melanogaster]HemolymphDrosophila;Drosophila insulin-like peptides;amino acid transporter;food;glutamate dehydrogenase;glycemia;growth;insulin-producing cells;minidiscs;starvationDrosophila ProteinsProtein Isoformsmetabolism [Calcium]genetics [Insulins]genetics [Amino Acid Transport Systems]lcsh:QH301-705.5minidiscsGene knockdowncytology [Larva]pancreatic beta-cellglutamate dehydrogenaseBrainmetabolism [Hemolymph]secretionDrosophila melanogasterBiochemistryLarvaAlimentation et NutritionDrosophilaLeucineSignal Transductionglucose-transportgenetics [Glutamate Dehydrogenase]genetics [Protein Isoforms]growthamino-acidsmetabolism [Drosophila Proteins][SDV.BC]Life Sciences [q-bio]/Cellular BiologyNutrient sensingmetabolism [Larva]Biologyinsulin-producing cellsArticleGeneral Biochemistry Genetics and Molecular Biologymetabolism [Amino Acid Transport Systems]metabolism [Insulins]03 medical and health sciencesLeucineparasitic diseasesmedicineFood and NutritionAnimalsddc:610cytology [Insulin-Secreting Cells]cardiovascular diseasesAmino acid transporterMnd protein Drosophilaadministration & dosage [Leucine]metabolism [Protein Isoforms]Ilp5 protein Drosophilacytology [Brain]foodGlutamate dehydrogenaseInsulinNeurosciencesstarvationGlucose transportermetabolism [Insulin-Secreting Cells]glutamate-dehydrogenasel-leucineglycemia030104 developmental biologyGene Expression Regulationlcsh:Biology (General)metabolism [Brain]metabolism [Glutamate Dehydrogenase]Neurons and Cognitionmetabolism [Leucine]CalciumDrosophila insulin-like peptidesmetabolismfat-cells030217 neurology & neurosurgeryCell Reports
researchProduct

Unexpected subcellular distribution of a specific isoform of the Coxsackie and adenovirus receptor, CAR-SIV, in human pancreatic beta cells

2018

Aims/hypothesis: The Coxsackie and adenovirus receptor (CAR) is a transmembrane cell-adhesion protein that serves as an entry receptor for enteroviruses and may be essential for their ability to infect cells. Since enteroviral infection of beta cells has been implicated as a factor that could contribute to the development of type 1 diabetes, it is often assumed that CAR is displayed on the surface of human beta cells. However, CAR exists as multiple isoforms and it is not known whether all isoforms subserve similar physiological functions. In the present study, we have determined the profile of CAR isoforms present in human beta cells and monitored the subcellular localisation of the princi…

0301 basic medicineMaleviruksetEndocrinology Diabetes and MetabolismInsulin-Secreting CellsProtein IsoformsReceptorChildProinsulinEnterovirusMicroscopy ConfocalChemistryNuclear ProteinsImmunogold labellingMiddle AgedFlow CytometryImmunohistochemistryTransmembrane protein3. Good healthCell biologyEndocrinologieenteroviruksetMédecine interneProtein interacting with C-kinase 1 (PICK1)medicine.anatomical_structureChild PreschoolCoxsackievirus BFemalePancreasPICK1Gene isoformBeta cells; Coxsackie and adenovirus receptor; Coxsackievirus B; Enterovirus; Insulin granule; Pancreas; Protein interacting with C-kinase 1 (PICK1)AdultCoxsackie and Adenovirus Receptor-Like Membrane ProteinAdolescentImmunoprecipitationBlotting WesterninsuliiniArticle03 medical and health sciencesYoung AdultMétabolismeInternal MedicinemedicineHumansImmunoprecipitationPancreasCoxsackie and adenovirus receptorInsulin granuleDiabétologieBeta cellshaima030104 developmental biologyDiabetes Mellitus Type 1Carrier ProteinsDiabetologia
researchProduct

Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vi…

2018

AbstractCell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in …

0301 basic medicineCancer ResearchCellular differentiationCellstem cells; oxidative stress; clone isolation/dk/atira/pure/subjectarea/asjc/2800/2804Mice SCIDp38 Mitogen-Activated Protein KinasesMiceCell MovementProtein IsoformsMuscular Dystrophy/dk/atira/pure/subjectarea/asjc/2400/2403Settore BIO/06 - Anatomia Comparata E Citologiaeducation.field_of_studylcsh:CytologyStem CellsSettore BIO/13Cell DifferentiationSkeletalCell biologymedicine.anatomical_structureMuscleMatrix Metalloproteinase 2Animals; Cell Cycle Checkpoints; Cell Differentiation; Cell Line; Cell Movement; Cell Survival; Hydrogen Peroxide; Matrix Metalloproteinase 2; Mice; Mice SCID; Muscle Skeletal; Muscular Dystrophy Animal; Oxidative Stress; Protein Isoforms; Reactive Oxygen Species; Sarcoglycans; Stem Cell Transplantation; Stem Cells; p38 Mitogen-Activated Protein Kinases/dk/atira/pure/subjectarea/asjc/1300/1306/dk/atira/pure/subjectarea/asjc/1300/1307Cell SurvivalPopulationImmunologyBiologySCIDArticleCell Line03 medical and health sciencesCellular and Molecular NeuroscienceIn vivoSarcoglycansmedicineAnimalsProgenitor celllcsh:QH573-671educationMuscle Skeletaloxidative streMesoangioblastAnimalCell BiologyCell Cycle CheckpointsHydrogen PeroxideMuscular Dystrophy Animalclone isolationTransplantationstem cellOxidative Stress030104 developmental biologyCell cultureReactive Oxygen SpeciesStem Cell TransplantationCell Death & Disease
researchProduct

Identification of a classic nuclear localization signal at the N terminus that regulates the subcellular localization of Rbfox2 isoforms during diffe…

2016

Nuclear localization of the alternative splicing factor Rbfox2 is achieved by a C-terminal nuclear localization signal (NLS) which can be excluded from some Rbfox2 isoforms by alternative splicing. While this predicts nuclear and cytoplasmic localization, Rbfox2 is exclusively nuclear in some cell types. Here, we identify a second NLS in the N terminus of Rbfox2 isoform 1A that is not included in Rbfox2 isoform 1F. Rbfox2 1A isoforms lacking the C-terminal NLS are nuclear, whereas equivalent 1F isoforms are cytoplasmic. A shift in Rbfox2 expression toward cytoplasmic 1F isoforms occurs during epithelial to mesenchymal transition (EMT) and could be important in regulating the activity and fu…

0301 basic medicineGene isoformCytoplasmEpithelial-Mesenchymal TransitionNuclear Localization SignalsBiophysicsBiochemistryCell LineTransforming Growth Factor beta103 medical and health sciencesMiceMammary Glands AnimalProtein DomainsStructural BiologyCell Line TumorGeneticsNLSAnimalsProtein IsoformsAmino Acid SequenceMolecular BiologyCell NucleusChemistryAlternative splicingCell DifferentiationEpithelial CellsMouse Embryonic Stem CellsCell BiologySubcellular localizationMolecular biologyCell biologyAlternative Splicing030104 developmental biologyP19 cellCytoplasmRNA splicingRNA Splicing FactorsSequence AlignmentNuclear localization sequenceSignal TransductionFEBS letters
researchProduct

Filamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle.

2002

Filamin C is the muscle isoform of a group of large actin-crosslinking proteins. On the one hand, filamin C is associated with the Z-disk of the myofibrillar apparatus and binds to myotilin; on the other hand, it interacts with the sarcoglycan complex at the sarcolemma. Filamin C may be involved in reorganizing the cytoskeleton in response to signalling events and in muscle it may, in addition, fulfill structural functions at the Z-disk. An examination of biopsies from patients with multi-minicore myopathy, central core myopathy and neurogenic target fibers with core-like target formations (TF) revealed strong reactivity of all the cores and target formations with two different anti-filamin…

Pathologymedicine.medical_specialtyanimal structuresBiopsyFilaminsmacromolecular substancesBiologyFilamin03 medical and health sciences0302 clinical medicineContractile ProteinsMuscular DiseasesReference ValuesmedicineMyotilinHumansProtein IsoformsCytoskeletonMyopathyMicroscopy ImmunoelectronMuscle Skeletal030304 developmental biology0303 health sciencesSarcolemmaMicrofilament Proteinsmedicine.diseaseImmunohistochemistryCell biologybody regionsNeurologyDesminNeurology (clinical)medicine.symptomMyofibrilCarrier Proteins030217 neurology & neurosurgeryCentral core diseaseBiomarkersJournal of the neurological sciences
researchProduct

Localization of HSP70, Cdc2, and cyclin B in sea urchin oocytes in non-stressed conditions.

2003

In Paracentrotus lividus embryos, a Mediterranean sea urchin species, HSP70 is present in all the cells. During cell division it localizes under normal growth conditions on the centrosomes and on the whole isolated mitotic apparatus. Now, in situ hybridization, Western blot analyses, and immunohistochemistry show that the HSP70 mRNA is present in both small and large P. lividus oocytes, that all four isoforms of HSP70 can be found also in the oocytes, and that a certain amount of HSP70 localizes on asters and spindles during polar body formation. Moreover, two representative cell-cycle related proteins, cyclin B, and Cdc2, are present both in small and large oocytes, concentrating in the ge…

Sea urchinCell divisionBlotting WesternBiophysicsCyclin BCdc2In situ hybridizationCyclin BBiochemistryParacentrotus lividusPolar bodybiology.animalCDC2 Protein KinaseAnimalsProtein IsoformsHSP70 Heat-Shock ProteinsRNA MessengerSea urchinMolecular BiologyHSP70In Situ HybridizationCyclin-dependent kinase 1biologyOvaryCell Biologybiology.organism_classificationMolecular biologyImmunohistochemistryCell biologyOogenesiBiophysicCytoplasmSea Urchinsbiology.proteinOocytesElectrophoresis Polyacrylamide GelFemaleCell DivisionBiochemical and biophysical research communications
researchProduct

Colocalization but differential regulation of neuronal NO synthase and nicotinic acetylcholine receptor in C2C12 myotubes.

2003

In mammalian skeletal muscle, neuronal-type nitric oxide synthase (nNOS) is found to be enriched at neuromuscular endplates. Here we demonstrate the colocalization of the nicotinic acetylcholine receptor (nAChR, stained with α-bungarotoxin) and nNOS (stained with a specific antibody) in murine C2C12myotubes. However, coimmunoprecipitation experiments demonstrated no evidence for a direct protein-protein association between the nAChR and nNOS in C2C12myotubes. An antibody to the α1-subunit of the nAChR did not coprecipitate nNOS, and an nNOS-specific antibody did not precipitate the α1-subunit of the nAChR. Treatment of mice with bacterial LPS downregulated the expression of nNOS in skeletal…

LipopolysaccharidesPhysiologyMuscle Fibers SkeletalNitric Oxide Synthase Type IReceptors NicotinicCell LineInterferon-gammaMicemedicineAnimalsProtein IsoformsTissue DistributionRNA MessengerMuscle SkeletalMice Inbred C3HbiologyMyogenesisSkeletal muscleColocalizationCell BiologyMolecular biologyNitric oxide synthaseNicotinic acetylcholine receptormedicine.anatomical_structureNicotinic agonistnervous systembiology.proteinNitric Oxide SynthaseC2C12Acetylcholinemedicine.drugAmerican journal of physiology. Cell physiology
researchProduct