Search results for "k-epsilon"

showing 7 items of 7 documents

Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

2017

Abstract A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate ε, length scale of energy-containing eddies L, a turbulence anisotropy parameter , gradient Richardson number (Ri) representing the local atmospheric stability, and the rate of destruction of temperature variance . Model outp…

Length scaleAtmospheric Science010504 meteorology & atmospheric sciencesK-epsilon turbulence modelFLOWVelocityTensorsWind01 natural sciencesWind speedAtmospheric temperature010305 fluids & plasmasPhysics::Fluid DynamicsEnergy-containing eddiesConvergence of numerical methodsMonin-Obukhov similarity theorySCALEPhysicsTurbulenceAtmospheric turbulenceMechanicsBuoyancySURFACE-LAYER TURBULENCEClassical mechanicsFluxesStratified turbulenceSIMILARITYSIMULATIONBoundary layersStabilityBuoyancyMETEOROLOGYengineering.materialPROFILEAtmospheric thermodynamics0103 physical sciencesAtmospheric instabilityWind shearsSTABLY STRATIFIED TURBULENCETensorRapid distortion theory0105 earth and related environmental sciencesWind shearBoundary layer flowRichardson numberAtmospheric observationsViscous dissipation rateHorizontal array turbulence study field programsTurbulenceBoundary layerengineeringJournal of the Atmospheric Sciences
researchProduct

Experimental Analysis of Horizontal Turbulence of Flow over Flat and Deformed Beds

2015

Abstract Laboratory experiments in a straight flume were carried out to examine the evolution of large-scale horizontal turbulent structures under flat-bed and deformed-bed conditions. In this paper, the horizontal turbulence of flow under these conditions is analyzed and compared. The conditioned quadrant method is applied to verify the occurrence of turbulent events. The distributions of horizontal Reynolds shear stress and turbulent kinetic energy are also presented and discussed. Results show the occurrence of an “initial” sequence of horizontal vortices whose average spatial length scales with the channel width. Under deformed-bed conditions, this spatial length does not change.

MeteorologyTurbulenceK-epsilon turbulence modelFlow (psychology)Bed formBurst cycleMechanicsLaboratory experimentVortexOpen-channel flowQuadrant (plane geometry)Physics::Fluid DynamicsFlumeFlow turbulence structureTurbulence kinetic energyOpen-channel flowGeologyWater Science and TechnologyCivil and Structural EngineeringArchives of Hydro-Engineering and Environmental Mechanics
researchProduct

Computational and experimental studies of the flow field near the beam entrance window of a liquid metal target

2014

Abstract After the first world liquid metal target has been successfully operated at the SINQ facility at the Paul Scherrer Institut (PSI) for 6 months. The idea of having a reliable target with a bypass flow for cooling the beam entrance window, but with the bypass flow not driven by a separate pump, was examined within the project called LIMETS (Liquid Metal Target for SINQ). In designing of liquid metal targets, turbulence modelling is of high importance due to lack in methods for measuring the spatial distribution of flow and turbulence characteristics. In this study, validation of different turbulence models were performed in water model with hemispherical geometry using particle image…

Nuclear and High Energy PhysicsEngineeringLiquid metalbusiness.industryTurbulenceWater flowK-epsilon turbulence modelMechanical EngineeringMechanicsPhysics::Fluid DynamicsOpticsNuclear Energy and EngineeringParticle image velocimetryTurbulence kinetic energyGeneral Materials ScienceSafety Risk Reliability and QualitybusinessReynolds-averaged Navier–Stokes equationsWaste Management and DisposalLarge eddy simulationNuclear Engineering and Design
researchProduct

Prediction of compound channel secondary flows using anisotropic turbulence models

2014

PhysicsAnisotropic turbulenceK-epsilon turbulence modelK-omega turbulence modelMechanicsCommunication channel
researchProduct

Unsteady turbulence in plane channel flow

2011

Abstract Direct numerical simulations were conducted for oscillating flow with zero time mean (reciprocating flow) in a plane channel subject to a harmonic forcing term of varying amplitude and frequency. The results confirmed the existence of four flow regimes (laminar, “disturbed laminar”, intermittently turbulent, and fully turbulent) depending on the above parameters. The flow behaviour was found to depend on the complex interplay of mean and turbulence quantities, as described by the closed loop formed by the streamwise Reynolds-averaged momentum equation in conjunction with the exact transport equations for the turbulent (Reynolds) stresses. A crucial role in this loop appeared to be …

PhysicsGeneral Computer ScienceTurbulenceChézy formulaK-epsilon turbulence modelUnsteady turbulence Channel flow Direct Numerical Simulation Turbulence BudgetGeneral EngineeringTurbulence modelingLaminar flowK-omega turbulence modelMechanicsOpen-channel flowPhysics::Fluid DynamicsClassical mechanicsTurbulence kinetic energySettore ING-IND/19 - Impianti NucleariComputers & Fluids
researchProduct

A vorticity based aeroacoustic prediction for the noise emission of a low-speed turbulent internal flow

2003

Abstract Turbulent internal flows are known to generate intense noise as well as surface pressure fluctuations. Numerically predicting the noise emission near the prescribed boundaries requires that the sound-generating turbulent flow be adequately represented and described. The k – e method provides a promising tool for obtaining the unsteady characteristics of a realistic turbulent flow interacting with a rectangular flat plate undergoing “ground effect”. The far-field acoustic calculation is facilitated by the Kambe model (from Lighthill’s theory) and an original post-processor has been developed to determine the far-field spectra and the source term characteristics. In pre-processed tur…

Physics::Fluid DynamicsPhysicsGeneral Computer ScienceGround effect (cars)TurbulenceK-epsilon turbulence modelInternal flowComputationGeneral EngineeringEnclosureAeroacousticsMechanicsVorticityComputers & Fluids
researchProduct

k-epsilon Predictions of Heat Transfer in Turbulent Recirculating Flows Using an Improved Wall Treatment

1989

k-epsilonCFDTurbulence ModelHeat TransferFluid FlowWall FunctionsSettore ING-IND/19 - Impianti Nucleari
researchProduct