Search results for "kernel"
showing 10 items of 357 documents
Kernel methods and their derivatives: Concept and perspectives for the earth system sciences.
2020
Kernel methods are powerful machine learning techniques which implement generic non-linear functions to solve complex tasks in a simple way. They Have a solid mathematical background and exhibit excellent performance in practice. However, kernel machines are still considered black-box models as the feature mapping is not directly accessible and difficult to interpret.The aim of this work is to show that it is indeed possible to interpret the functions learned by various kernel methods is intuitive despite their complexity. Specifically, we show that derivatives of these functions have a simple mathematical formulation, are easy to compute, and can be applied to many different problems. We n…
Kernel Anomalous Change Detection for Remote Sensing Imagery
2020
Anomalous change detection (ACD) is an important problem in remote sensing image processing. Detecting not only pervasive but also anomalous or extreme changes has many applications for which methodologies are available. This paper introduces a nonlinear extension of a full family of anomalous change detectors. In particular, we focus on algorithms that utilize Gaussian and elliptically contoured (EC) distribution and extend them to their nonlinear counterparts based on the theory of reproducing kernels' Hilbert space. We illustrate the performance of the kernel methods introduced in both pervasive and ACD problems with real and simulated changes in multispectral and hyperspectral imagery w…
Randomized kernels for large scale Earth observation applications
2020
Abstract Current remote sensing applications of bio-geophysical parameter estimation and image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. New satellite sensors involving a high number of improved time, space and wavelength resolutions give rise to challenging computational problems. Standard physical inversion techniques cannot cope efficiently with this new scenario. Dealing with land cover classification of the new image sources has also turned to be a complex problem requiring large amount of memory and processing time. In order to cope with these problems, statistical learning has greatly helped in the last years to develop st…
Randomized Rx For Target Detection
2018
This work tackles the target detection problem through the well-known global RX method. The RX method models the clutter as a multivariate Gaussian distribution, and has been extended to nonlinear distributions using kernel methods. While the kernel RX can cope with complex clutters, it requires a considerable amount of computational resources as the number of clutter pixels gets larger. Here we propose random Fourier features to approximate the Gaussian kernel in kernel RX and consequently our development keep the accuracy of the nonlinearity while reducing the computational cost which is now controlled by an hyperparameter. Results over both synthetic and real-world image target detection…
Consistent Regression of Biophysical Parameters with Kernel Methods
2020
This paper introduces a novel statistical regression framework that allows the incorporation of consistency constraints. A linear and nonlinear (kernel-based) formulation are introduced, and both imply closed-form analytical solutions. The models exploit all the information from a set of drivers while being maximally independent of a set of auxiliary, protected variables. We successfully illustrate the performance in the estimation of chlorophyll content.
Estimating with kernel smoothers the mean of functional data in a finite population setting. A note on variance estimation in presence of partially o…
2014
In the near future, millions of load curves measuring the electricity consumption of French households in small time grids (probably half hours) will be available. All these collected load curves represent a huge amount of information which could be exploited using survey sampling techniques. In particular, the total consumption of a specific cus- tomer group (for example all the customers of an electricity supplier) could be estimated using unequal probability random sampling methods. Unfortunately, data collection may undergo technical problems resulting in missing values. In this paper we study a new estimation method for the mean curve in the presence of missing values which consists in…
A Unified SVM Framework for Signal Estimation
2013
This paper presents a unified framework to tackle estimation problems in Digital Signal Processing (DSP) using Support Vector Machines (SVMs). The use of SVMs in estimation problems has been traditionally limited to its mere use as a black-box model. Noting such limitations in the literature, we take advantage of several properties of Mercer's kernels and functional analysis to develop a family of SVM methods for estimation in DSP. Three types of signal model equations are analyzed. First, when a specific time-signal structure is assumed to model the underlying system that generated the data, the linear signal model (so called Primal Signal Model formulation) is first stated and analyzed. T…
MERCURY: A Transparent Guided I/O Framework for High Performance I/O Stacks
2017
The performance gap between processors and I/O represents a serious scalability limitation for applications running on computing clusters. Parallel file systems often provide mechanisms that allow programmers to disclose their I/O pattern knowledge to the lower layers of the I/O stack through a hints API. This information can be used by the file system to boost the application performance. Unfortunately, programmers rarely make use of these features, missing the opportunity to exploit the full potential of the storage system. In this paper we propose MERCURY, a transparent guided I/O framework able to optimize file I/O patterns in scientific applications, allowing users to control the I/O b…
Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis
2020
Parkinson’s disease is found as a progressive neurodegenerative condition which affects motor circuit by the loss of up to 70% of dopaminergic neurons. Thus, diagnosing the early stages of incidence is of great importance. In this article, a novel chaos-based stochastic model is proposed by combining the characteristics of chaotic firefly algorithm with Kernel-based Naïve Bayes (KNB) algorithm for diagnosis of Parkinson’s disease at an early stage. The efficiency of the model is tested on a voice measurement dataset that is collected from “UC Irvine Machine Learning Repository.” The dynamics of chaos optimization algorithm will enhance the firefly algorithm by introducing six types of chao…
Tracking of Quantized Signals Based on Online Kernel Regression
2021
Kernel-based approaches have achieved noticeable success as non-parametric regression methods under the framework of stochastic optimization. However, most of the kernel-based methods in the literature are not suitable to track sequentially streamed quantized data samples from dynamic environments. This shortcoming occurs mainly for two reasons: first, their poor versatility in tracking variables that may change unpredictably over time, primarily because of their lack of flexibility when choosing a functional cost that best suits the associated regression problem; second, their indifference to the smoothness of the underlying physical signal generating those samples. This work introduces a …