Search results for "kinetic energy"
showing 10 items of 400 documents
Oxygen depletion in dense molecular clouds: a clue to a low O2 abundance?
2011
Context: Dark cloud chemical models usually predict large amounts of O2, often above observational limits. Aims: We investigate the reason for this discrepancy from a theoretical point of view, inspired by the studies of Jenkins and Whittet on oxygen depletion. Methods: We use the gas-grain code Nautilus with an up-to-date gas-phase network to study the sensitivity of the molecular oxygen abundance to the oxygen elemental abundance. We use the rate coefficient for the reaction O + OH at 10 K recommended by the KIDA (KInetic Database for Astrochemistry) experts. Results: The updates of rate coefficients and branching ratios of the reactions of our gas-phase chemical network, especially N + C…
A KInetic Database for Astrochemistry (KIDA)
2012
We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense…
Utility of Hovmöller diagrams to diagnose Rossby wave trains
2011
The study investigates and compares various methods that aim to diagnose Rossby wave trains with the help of Hovm¨ oller diagrams. Three groups of methods are distinguished: The first group contains trough-and-ridge Hovm¨ oller diagrams of the meridional wind; they provide full phase information, but differ in the method for latitudinal averaging or weighting. The second group aims to identify Rossby wave trains as a whole, discounting individual troughs and ridges. The third group contains diagnostics which focus on physical mechanisms during the different phases of a Rossby wave train life cycle; they include the analysis of eddy kinetic energy and methods for quantifying Rossby wave brea…
A numerical model of the cloud-topped planetary boundary-layer: Radiation, turbulence and spectral microphysics in marine stratus
1996
A numerical model of the cloud-topped planetary boundary-layer is presented. The model is one-dimensional with special emphasis on a detailed description of cloud microphysical processes. Aerosols and cloud droplets are treated in a two-dimensional particle-distribution whereby the activation of aerosols is calculated explicitly by solving the droplet-growth equation at all relative humidities. Atmospheric radiation is determined with a δ-two-stream radiation scheme. Turbulent fluxes are parametrized as a function of the turbulent kinetic energy. Numerical results are presented which are obtained by utilizing measurements made over the North Sea. The interaction between radiation, turbulenc…
A New Numerical Approach to Estimate the Sunyaev–Zel’dovich Effect
2013
Several years ago, we designed a particular ray tracing method. Combined with a Hydra parallel code (without baryons), it may compute some CMB anisotropies: weak lensing (WL) and Rees–Sciama (RS) effects. Only dark matter is fully necessary to estimate these effects. For very small angular scales, we made an exhaustive study leading to a lensing contribution slightly—but significantly—greater than previous ones. Afterwards, the same ray tracing procedure was included in a parallel Hydra code with baryons. The resulting code was then tested. This code is being currently applied to the study of the thermal and kinetic Sunyaev–Zel’dovich (SZ) contributions to the CMB anisotropies. We present h…
A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures
2016
In this short paper, we formally derive the thin spray equation for a steady Stokes gas, i.e. the equation consists in a coupling between a kinetic (Vlasov type) equation for the dispersed phase and a (steady) Stokes equation for the gas. Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, arXiv:1608.00422 [math.AP]] where the evolution of the gas is governed by the Navier-Stokes equation.
Sedimentation of dissolved macromolecules in the vicinity of the consolute point 1. Strictly binary systems and kinetic considerations
1986
This paper analyzes the effect of gravity on polymer solutions near the consolute point. Calculations are carried out for monodisperse polystyrene in cyclohexane using the Flory-Huggins expression with a concentration-dependent interaction parameter for the free energy of mixing. Depending on molecular weight and distance to the demixing temperature, the influence of gravity leads to non-negligible gradients of the volume fraction in the one-phase region as well as in the two-phase region. In particular, the effect of gravity on the measurement of the coexistence curve in a finite sample is calculated explicitly.
Investigating marine shallow waters dynamics to explore the role of turbidity on ecological responses
2009
The ecological tangible effect of the complex interaction between sediments and water column in shallow waters is represented by turbidity which is a common feature of most aquatic ecosystems: it varies both temporally and spatially; it can cover a huge area and persist for a long period or it can be very localized and temporary. Among many factors able to generate turbidity, wind generated wave action and water mass movements due to tides seem important in causing resuspension of sediments. Although there is much research spent in last decades on this topic and many models to explain the complexity of the wind-water-sediment interaction, some interactive aspects are too site specific and t…
Many-body Green's function theory of electrons and nuclei beyond the Born-Oppenheimer approximation
2020
The method of many-body Green's functions is developed for arbitrary systems of electrons and nuclei starting from the full (beyond Born-Oppenheimer) Hamiltonian of Coulomb interactions and kinetic energies. The theory presented here resolves the problems arising from the translational and rotational invariance of this Hamiltonian that afflict the existing many-body Green's function theories. We derive a coupled set of exact equations for the electronic and nuclear Green's functions and provide a systematic way to approximately compute the properties of arbitrary many-body systems of electrons and nuclei beyond the Born-Oppenheimer approximation. The case of crystalline solids is discussed …
Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions.
2009
International audience; C-A-S-H of varying Al/Si and Ca/(Al+Si) ratios have been prepared introducing C-S-H (Ca/Si=0.66 and 0.95) at different weight concentrations in a solution coming from the hydration of tricalcium aluminate (Ca3Al2O6) in water. XRD and EDX (TEM) analyses show that using this typical synthesise procedure, pure C-A-S-H is obtained only for calcium hydroxide concentrations below 4.5 mmol L−1. Otherwise, calcium carboaluminate or strätlingite is also present beside C-A-S-H. The tobermorite-like structure is maintained for C-A-S-H. A kinetic study has shown that the formation of C-A-S-H is a fast reaction, typically less than a few hours. The Ca/(Al+Si) ratio of C-A-S-H mat…