Search results for "lac"

showing 10 items of 13451 documents

High Resolution X-ray Spectroscopy of T Tauri Stars in the Taurus-Auriga Complex

2006

Differences have been reported between the X-ray emission of accreting and non-accreting stars. Some observations have suggested that accretion shocks could be responsible for part of the X-ray emission in Classical T Tauri stars (CTTS). We present high-resolution X-ray spectroscopy of nine pre-main sequence stars in order to test the proposed spectroscopic differences between accreting and non-accreting pre-main sequence stars. We use X-ray spectroscopy from the XMM-Newton Reflection Grating Spectrometers and the EPIC instruments. We interpret the spectra using optically thin thermal models with variable abundances, together with an absorption column density. For BP Tau and AB Aur we deriv…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral line0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsAURIGAStar formationAstrophysics (astro-ph)Astronomy and AstrophysicsAbundance of the chemical elementsAccretion (astrophysics)StarsT Tauri star13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsMain sequence
researchProduct

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

Photometric variability of the Be star CoRoT-ID 102761769

2010

Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, wich exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. For the first time, we can now study in detail Be stars outside the Earth's atmosphere with sufficient temporal resolution. We investigate the variability of the Be Star CoRoT-ID 102761769 observed with the CoRoT satellite in the exoplanet field during the initial run. One low-resolution spectrum of the star was obtained wi…

010504 meteorology & atmospheric sciencesBe starFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsType (model theory)01 natural sciencesPartícules (Física nuclear)Luminositysymbols.namesake0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsStellar rotationBalmer seriesAstronomy and AstrophysicsCircumstellar envelopeLight curveStarsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceEsteroidessymbolsAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Study of a sample of faint Be stars in the exofield of CoRoT

2013

International audience; Context. Be stars are probably the most rapid rotators among stars in the main sequence (MS) and, as such, are excellent candidates to study the incidence of the rotation on the characteristics of their non-radial pulsations, as well as on their internal structure. Pulsations are also thought to be possible mechanisms that help the mass ejection needed to build up the circumstellar disks of Be stars.Aims. The purpose of this paper is to identify a number of faint Be stars observed with the CoRoT satellite and to determine their fundamental parameters, which will enable us to study their pulsation properties as a function of the location in the HR diagram and to searc…

010504 meteorology & atmospheric sciencesBe starHertzsprung–Russell diagramK-type main-sequence starstars: emission-lineAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral lineBlue stragglersymbols.namesakestars: rotation0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]AstronomyBeAstronomy and Astrophysicsstars: early-typeHerbig Ae/Be starT Tauri starStars[SDU]Sciences of the Universe [physics]Space and Planetary Sciencesymbolsstars: fundamental parametersstars: oscillationsAstrophysics::Earth and Planetary Astrophysicsbinaries: spectroscopicAstronomy & Astrophysics
researchProduct

Changements environnementaux survenant à la limite Oligocène/Miocène du bassin des Limagnes (Massif central, France).

2018

16 pages; International audience; Continental environments are very sensitive to climatic variations. A unique opportunity to study the climate changes around the Oligocene/Miocene boundary is offered by the Limagne graben Basin (France) where this stage boundary is well constrained by fossils. Indeed, some localities of the Limagne Graben Basin are so rich in mammal remains that they have become a European reference for mammal biostratigraphy. The dominant sedimentary facies of the lacustrine deposits in the northern part of the Limagne Graben Basin are composed of poorly cemented marls and calcarenites containing various plants and animals remains (e.g. algae, fish bones and teeth, gastro…

010504 meteorology & atmospheric sciencesContext (language use)Biostratigraphy010502 geochemistry & geophysics01 natural sciencesPaleontology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistrycarbonates lacustresMarl14. Life underwaterstromatolitebassin des Limagnes0105 earth and related environmental sciencesPalynologygeographygeography.geographical_feature_categoryLimagne Basinisotopes de l’oxygènebiologylimite oligo-miocèneoxygen isotopeslcsh:QE1-996.5GeologyMassif15. Life on landbiology.organism_classificationlacustrine carbonateGrabenlcsh:GeologyStromatolite13. Climate action[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/StratigraphyapatitePeriod (geology)Oligocene/Miocene boundarybiozoneGeologyBSGF - Earth Sciences Bulletin
researchProduct

THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

2020

This is an open access article.-- Full list of authors: Broderick, Avery E.; Gold, Roman; Karami, Mansour; Preciado-López, Jorge A.; Tiede, Paul; Pu, Hung-Yi; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Baloković, Mislav; Barrett, John; Bintley, Dan; Blackburn, Lindy; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Cho, Ilje; Conway, John E.; Cordes, James M.; Crew, Geoffrey B.; Cu…

010504 meteorology & atmospheric sciencesExploitAstronomy01 natural sciencesData typeSet (abstract data type)Galactic center0103 physical sciencesVery-long-baseline interferometry16471769010303 astronomy & astrophysics0105 earth and related environmental sciencesVery long baseline interferometryPhysicsEvent Horizon TelescopeSupermassive black holeAstrophysical black holesGalactic CenterAstronomy and Astrophysics98565Black hole[SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstronomy data analysis1858[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]AlgorithmSubmillimeter astronomy
researchProduct

Astrometric detection of a low-mass companion orbiting the star AB Doradus

1997

International audience; We report submilliarcsecond-precise astrometric measurements for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and HIPPARCOS data. Our astrometric analysis results in the precise determination of the kinematics of this star, which reveals an orbital motion readily explained as caused by gravitational interaction with a low-mass companion. From the portion of the reÑex orbit covered by our data and using a revised mass of the primary star (0.76 M _) derived from our new value of the parallax (66.3 mas \ n \ 67.2 mas), we Ðnd the dynamical mass of the newly discovered companion to be between 0.08 and 0.11 If accurate photom…

010504 meteorology & atmospheric sciencesGalactic astronomyStellar massBrown dwarfAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesstars: low-mass0103 physical sciencesVery-long-baseline interferometryAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsstars: individual (AB Doradus)[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAstrometryInterferometrySpace and Planetary Sciencetechniques: interferometricOrbital motionastrometryAstrophysics::Earth and Planetary Astrophysics[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]stars: kinematicsLow Massbrown dwarfs
researchProduct

A giant exoplanet orbiting a very-low-mass star challenges planet formation models

2019

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…

010504 meteorology & atmospheric sciencesGas giant530 PhysicsFOS: Physical sciencesMinimum massAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsMultidisciplinary520 AstronomyGiant planetAstronomyPlanetary system620 EngineeringAccretion (astrophysics)ExoplanetOrbitAstrophysics - Solar and Stellar Astrophysics13. Climate actionAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary AstrophysicsScience
researchProduct

A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger

2018

Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 10 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evol…

010504 meteorology & atmospheric sciencesGeneral Science & TechnologyInfraredAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalaxy merger01 natural sciencesTidal disruption eventGravitational fieldMD Multidisciplinary0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsCOREBLACK-HOLES010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Supermassive black holeta115Science & TechnologyMultidisciplinaryAstrophysics - Astrophysics of GalaxiesGalaxyMultidisciplinary SciencesWavelengthAstrophysics of Galaxies (astro-ph.GA)Science & Technology - Other TopicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEMISSIONSTARS
researchProduct

Oligo-Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif Central)

2018

The Limagne Basin (French Massif Central) is an extensive continental lacustrine system accommodating microbial and metazoan buildups from Chattian to Aquitanian age. A description of these buildups and their associated biotic components in Grand Gandaillat and Crechy quarries provides insights into their spatio-temporal distribution patterns. Flats, cauliflowers, domes, cones and coalescent columnar morphologies have been identified with a main laminated mesofabric and laminated, columnar, filamentous and caddisfly-coated microfabrics. Two low-gradient margin models emerged based on the changes in the distribution, morphology and size of the microbial and metazoan-rich deposits through tim…

010504 meteorology & atmospheric sciencesGeochemistryCarbonatesVolcanismEcological successionStructural basin010502 geochemistry & geophysicsOceanography01 natural sciencesVolcanismMarlCycle ClimateEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface Processesgeographygeography.geographical_feature_categoryPaleontologyMassif15. Life on landTectonicTectonicsVolcanoSedimentary rockLacustrine/palustrine[SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/PaleontologyGeology
researchProduct