Search results for "laminar"

showing 10 items of 112 documents

PGC1α Regulates the Endothelial Response to Fluid Shear Stress via Telomerase Reverse Transcriptase Control of Heme Oxygenase-1

2021

AbstractFluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow that is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. Here we have identified peroxisome proliferator gamma coactivator-1α (PGC-1α) as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared to oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) increased PGC-1α expression and its transcription…

Heme oxygenasechemistry.chemical_compoundmedicine.anatomical_structureHMOX1EndotheliumKLF4In vivoChemistrymedicineLaminar flowTelomerase reverse transcriptaseHemeCell biology
researchProduct

A laboratory and theoretical study on the uptake of sulfur dioxide gas by small water drops containing hydrogen peroxide under laminar and turbulent …

2000

Abstract Laboratory experiments are described where the uptake of SO2 gas by water drops containing H2O2 is investigated where the taken up S(IV) is quickly converted to S(VI). During the gas uptake the drops were freely suspended at their terminal velocity by means of the Mainz vertical wind tunnel. Two series of experiments were carried out, one with a laminar air flow in the wind tunnel, one with a turbulent air flow in the wind tunnel. Afterwards, the experimental results were compared against model computations using the so-called fully mixed convective diffusion model. The experimental results for laminar flow conditions showed that the fully mixed convective diffusion model for the u…

HydrologyAtmospheric ScienceTerminal velocityTurbulenceChemistryAirflowSulfuric acidLaminar flowMechanicsPhysics::Fluid Dynamicschemistry.chemical_compoundAtmospheric chemistryPhysics::Atmospheric and Oceanic PhysicsSulfur dioxideGeneral Environmental ScienceWind tunnelAtmospheric Environment
researchProduct

Probing the low-temperature chemistry of ethanol via the addition of dimethyl ether

2018

Considering the importance of ethanol (EtOH) as an engine fuel and a key component of surrogate fuels, the further understanding of its auto-ignition and oxidation characteristics at engine-relevant conditions (high pressures and low temperatures) is still necessary. However, it remains difficult to measure ignition delay times for ethanol at temperatures below 850 K with currently available facilities including shock tube and rapid compression machine due to its low reactivity. Considering the success of our recent study of toluene oxidation under similar conditions [38], dimethyl ether (DME) has been selected as a radical initiator to explore the low-temperature reactivity of ethanol. In …

IGNITION DELAY020209 energyGeneral Chemical EngineeringRAPID COMPRESSION MACHINEGeneral Physics and AstronomyEnergy Engineering and Power TechnologyLibrary science02 engineering and technologyPRESSURE FLOW REACTORGAS-PHASE7. Clean energychemistry.chemical_compound[SPI]Engineering Sciences [physics]RATE CONSTANTSLow-temperature chemistry020401 chemical engineering0202 electrical engineering electronic engineering information engineeringDMELAMINAR BURNING VELOCITYOrganic chemistryDimethyl ether[INFO]Computer Science [cs]0204 chemical engineeringSHOCK-TUBECHEMICAL-KINETICSComputingMilieux_MISCELLANEOUSEthanolGeneral ChemistryTHERMAL-DECOMPOSITIONIgnition delay timesFuel TechnologychemistryLIQUID FUELS13. Climate action
researchProduct

Natural Convection Heat Transfer in a Partially- or Completely-Partitioned Vertical Rectangular Enclosure

1991

Laminar FlowNatural ConvectionEnclosureHeat TransferCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Theoretical prediction of rainfall intensity for a small rainfall simulator

2022

In this contribution, a theoretical approach was developed for predicting rainfall intensity for a small rainfall simulator. The developed equation was tested for two different devices and different pressure head and water temperature values. The proposed relationship was found to have a good predictive ability of rainfall intensity. The proposed theoretical approach could be usable with other devices that operate on the same principles of the simulator considered in this investigation.

Laminar flow regimeKamphorst simulatorRainfall simulationSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliRainfall intensity2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)
researchProduct

Morphometry of microstromatolites in calcrete laminar crusts and a fractal model of their growth

1996

The laminar crust, constituting the upper part of calcretes (terrestrial CaCO3 accumulations inside surficial sediments), is a succession of thin layers of various colors and shapes resembling micro-stromatolites. The crust structure and its diagenetic evolution are similar to stromatolites. A quantitative study of its structure was made using image analysis. Euclidian parameters were calculated to describe lamina shape. Eight hundred and eighty-six laminae were divided into six classes from the flatest forms to columnar shapes. The geometrical relationships between the shapes are interpreted as steps in the growth process of the microstromatolite. A fractal model of laminar crust growth wa…

Lamination (geology)Mathematics (miscellaneous)FractalThin sectionDiffusion-limited aggregationEarth and Planetary Sciences (miscellaneous)Dilation (morphology)MineralogyCrustLaminar flowGeologyDiagenesisMathematical Geology
researchProduct

Guided flows in coronal magnetic flux tubes

2018

There is evidence for coronal plasma flows to break down into fragments and to be laminar. We investigate this effect by modeling flows confined along magnetic channels. We consider a full MHD model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned to the field to that of another one with a slight misalignment. We assume a flow speed of 200 km/s, and an ambient magnetic field of 30 G. We find that while the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysics01 natural sciencesPhysics::Fluid DynamicsSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic drive010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsLaminar flowPlasmaMechanicsAstronomy and AstrophysicMagnetic fluxMagnetic fieldDipoleAstrophysics - Solar and Stellar AstrophysicsFlow velocitySpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

Influence of intracellular convection on the oxygen release by human erythrocytes

1972

There is general agreement today that intracellular diffusive transport of HbO2 and O2 limits the rate of oxygen uptake or release by the blood in the exchange vessels. Recent hemorheological results have shown that the mammalian erythrocyte exhibits fluidity as its most unique rheological property: it can be deformed continuously and rapidly, shear and normal stresses can be transmitted to the interior of the cell where systems of laminar flow are induced. These mechanical properties lead to the question whether or not intracellular convection does take place in the erythrocyte and to what extent it plays a part in gas exchange. A method was developed which subjects oxygen-saturated soluti…

MaleConvectionErythrocytesTime FactorsPhysiologyPartial PressureClinical BiochemistryAnalytical chemistryErythrocytes Abnormalchemistry.chemical_elementOxygenMicrocirculationDiffusionHemoglobinsRheologyOsmotic PressurePhysiology (medical)HumansRed CellChemistryCell MembraneTemperatureBiological TransportLaminar flowPartial pressureBlood ViscosityBody FluidsOxygenBiophysicsFemaleRheologyIntracellularPfl�gers Archiv European Journal of Physiology
researchProduct

Changes in the expression of cation-Cl- cotransporters, NKCC1 and KCC2, during cortical malformation induced by neonatal freeze-lesion.

2007

Focal cortical malformations comprise a heterogeneous group of disturbances in brain development, often associated with intractable epilepsy. A focal freeze-lesion of cerebral cortex in newborn rat produces a cortical malformation that resembles human polymicrogyria, clinical conditions that results from abnormal neuronal migration. The change in GABAergic functions that occurs during early brain development is induced by an alteration in Cl(-) homeostasis and plays important roles in neocortical development by modulating such events as laminar organization and synaptogenesis. We therefore investigated the relationship between pathogenesis of polymicrogyria and ontogeny of Cl(-) homeostasis…

MaleSodium-Potassium-Chloride SymportersSynaptogenesisDown-RegulationBiologyNervous System MalformationsLaminar organizationChloridesCell MovementChloride ChannelsCortex (anatomy)Parietal LobeGlial Fibrillary Acidic ProteinmedicinePolymicrogyriaAnimalsSolute Carrier Family 12 Member 2RNA MessengerRats Wistargamma-Aminobutyric AcidCerebral CortexSymportersGeneral NeuroscienceColocalizationCell DifferentiationGeneral Medicinemedicine.diseaseDenervationImmunohistochemistryMicrogyrusRatsUp-RegulationCold Temperaturemedicine.anatomical_structureNeuronal migration disorderBromodeoxyuridineCerebral cortexPhosphopyruvate HydrataseNeuroscienceBiomarkersNeuroscience research
researchProduct

Methyl-3-Hexenoate Combustion Chemistry: Experimental Study and Numerical Kinetic Simulation

2020

International audience; This work represents a detailed investigation of combustion and oxidation of methyl-3-hexenoate (CAS Number 2396-78-3), including experimental studies of combustion and oxidation characteristics, quantum chemistry calculations and kinetic model refinement. Following experiments have been carried out: Speciation measurements during oxidation in a jet-stirred reactor at 1 atm; chemical speciation measurements in a stoichiometric premixed flame at 1 atm using molecular-beam mass-spectrometry; ignition delay times measurements in a shock tube at 20 and 40 bar; and laminar burning velocity measurements at 1 atm using a heat-flux burner over a range of equivalence ratios. …

Materials scienceGeneral Chemical EngineeringFlame structureGeneral Physics and AstronomyEnergy Engineering and Power TechnologyThermodynamics02 engineering and technologyKinetic energyCombustion01 natural sciences7. Clean energylaw.invention020401 chemical engineeringlawOxidation mechanisms0103 physical sciencesOxidationJet stirred reactor0204 chemical engineeringShock tubePremixed flame010304 chemical physics[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentBurning velocityLaminar flowGeneral Chemistrykinetic modelingIgnitionbiofuelsIgnition system[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryFuel TechnologyFlame structureCombustorMethyl-3-hexenoate
researchProduct