Search results for "laminate"

showing 10 items of 129 documents

The durability of basalt fibres reinforced polymer (BFRP) panels for cladding

2015

The study focuses on two basalt composite laminate panels for cladding, produced by means of vacuum bagging technique. In particular, unidirectional and random basalt fabrics, with different areal weights, using epoxy resin as matrix, were used. According to the ISO 15686 methodology for the evaluation of durability, samples were subjected to cycles of artificial aging in climatic chamber and outdoor exposure, carrying out mechanical (i.e. quasi-static and dynamic) and calorimetric tests. The results show the effectiveness over time of produced basalt composite laminates and the initial increase of the mechanical performances after the first steps of accelerated aging.

Cladding (metalworking)Materials scienceComposite numberMechanical performanceSettore ICAR/11 - Produzione Edilizia02 engineering and technology010402 general chemistry01 natural sciencesLaminated composite panelDurabilityGeneral Materials ScienceComposite materialCivil and Structural Engineeringchemistry.chemical_classificationBuilding and ConstructionEpoxyPolymerComposite laminates021001 nanoscience & nanotechnologyDurabilityAccelerated aging0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of Materialsvisual_artSolid mechanicsvisual_art.visual_art_medium0210 nano-technologyBasalt fibre
researchProduct

Evolution Characteristics of Delamination Damage in CFRP Composites Under Transverse Loading

2012

The initiation and subsequent progression of delamination in CFRP composite laminates is examined using finite element method. A 12-ply CFRP composite, with a total thickness of 2.4 mm and anti-symmetric ply sequence is simulated under three-point bend test setup. Each unidirectional composite lamina is treated as an equivalent elastic and orthotropic panel. Interface behavior is defined using cohesive damage model. Complementary three-point bend test on the specimen is performed at crosshead speed of 2 mm/min. The measured load–deflection response at mid-span location compares well with predicted values. Interface delamination accounts for up to 46.7% reduction in flexural stiffness from t…

Cohesive zone modelMaterials scienceFlexural strengthComposite numberUltimate tensile strengthDelaminationFlexural rigidityComposite laminatesComposite materialOrthotropic material
researchProduct

Numerical and Experimental Analysis of the Frictional Effects on 4ENF Delamination Tests Performed on Unidirectional CFRP

2015

Abstract Progressive delamination in composite materials under static or fatigue loading condition are, in many structures, one of the predominant cause of failure. In the paper, an accurate study of quasi-static delamination growth under mode II loading condition is conducted. Several experimental tests are performed on composite laminates consisting of unidirectional carbon/epoxy layers. Four-point end-notched flexure (4ENF) test is employed in order to characterize the mode II interlaminar fracture toughness. The R-curve is obtained by means of optical and numerical determination of crack tip position. The energy release rate and the crack length are calculated through experimental deter…

Composite materialMaterials scienceSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineFracture toughnessEngineering (all)Composite materialCFRPSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria IndustrialeEngineering(all)Cohesive Zone ModelMode IIStrain energy release rateFiber pull-outbusiness.industryDelaminationGeneral MedicineStructural engineeringComposite materialsDissipationComposite laminatesCompression (physics)Cohesive zone modelDelamination4ENF.4ENFbusinessSettore ICAR/08 - Scienza Delle CostruzioniProcedia Engineering
researchProduct

Refined equivalent single layer formulations and finite elements for smart laminates free vibrations

2014

A family of 2D refined equivalent single layer models for multilayered and functionally graded smart magneto-electro-elastic plates is presented. They are based on variable kinematics and quasi-static behavior for the electromagnetic fields. First, the electromagnetic state of the plate is determined by solving the strong form of the electromagnetic governing equations coupled with the corresponding interface continuity conditions and external boundary conditions. The electromagnetic state is then condensed into the plate kinematics, whose governing equations can be written using the generalized principle of virtual displacements. The procedure identifies an effective elastic plate kinemati…

CouplingElectromagnetic fieldMaterials scienceMechanical Engineeringmedia_common.quotation_subjectConstitutive equationStiffnessComputational modelingInertiaSmart materialSmart laminatesIndustrial and Manufacturing EngineeringFinite element methodLaminate mechanicMechanics of MaterialsCeramics and CompositesmedicineBoundary value problemmedicine.symptomComposite materialSettore ING-IND/04 - Costruzioni E Strutture Aerospazialimedia_common
researchProduct

An equivalent single-layer approach for free vibrations analysis of smart laminated thick composite plates

2012

An equivalent single-layer model for the free vibration analysis of smart laminated plates is presented. The electric and magnetic fields are assumed to be quasi-static and third-order in-plane kinematics is employed to adequately take the shear influence into account when the plate thickness increases. The model governing equations are the plate equations of motion written in terms of mechanical primary variables and effective stiffness coefficients, which take the multifield coupling effects into account. The model shows that the surfaces magneto-electric boundary conditions enter the definitions of the laminate forces and moments resultants. Moreover, it reveals that new stiffness terms,…

CouplingVibration of platesMaterials sciencebusiness.industrySmart LaminateEquations of motionStiffnessMechanicsStructural engineeringCondensed Matter PhysicsAtomic and Molecular Physics and OpticsDisplacement (vector)VibrationShear (sheet metal)Mechanics of MaterialsSignal ProcessingmedicineGeneral Materials ScienceBoundary value problemMagnetoelectroelastic platesElectrical and Electronic Engineeringmedicine.symptombusinessSettore ING-IND/04 - Costruzioni E Strutture AerospazialiCivil and Structural Engineering
researchProduct

Numerical analysis of composite plates with multiple delaminations subjected to uniaxial buckling load

2006

Abstract In this paper the buckling and post-buckling behaviour of unidirectional and cross-ply composite laminated plates with multiple delaminations has been studied. Finite elements analyses have been performed, using a linear buckling model, based on the solution of the eigenvalues problem, and a non-linear one, based on an incremental-iterative method. With non-linear method large displacements have been taken into account and also contact constraints between sublaminates have been added to avoid their interpenetration. It has been found that both delamination length and position and stacking sequence of the plies influence the critical load of the plate; furthermore, linear and non-li…

Critical loadMaterials scienceComputer simulationnumerical analysisNumerical analysisComposite numberDelaminationGeneral Engineeringcomposite materialFinite element methoddelaminationBucklingCeramics and CompositesbucklingComposite materialcomposite laminated plateSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria IndustrialeEigenvalues and eigenvectors
researchProduct

On the mechanical behavior of BFRP to aluminum AA6086 mixed joints

2013

The aim of this work is to analyze the possibility to join aluminum alloy AA6086 and composite laminates reinforced with basalt fibers, an innovative material which use is growing in several applications as an alternative to glass fibers. To this goal, three joining techniques were investigated: mechanical by Self Piercing Riveting (in the next called SPR), adhesive by co-curing technique and mixed in which the joining techniques (i.e. adhesive and mechanical) were combined. Two manufacturing technologies (i.e. hand lay-up and vacuum bagging) were used both to produce composite substrates and to realize co-curing adhesion between the substrates to be joined. Mixed joints were realized by in…

D. Mechanical testingMaterials scienceB. AdhesionGlass fiberComposite numberchemistry.chemical_elementIndustrial and Manufacturing EngineeringJoints/joiningAluminiumRivetA. Hybrid; B. Adhesion; Basalt fibers; D. Mechanical testing; E. Joints/joiningComposite materialA. Hybridbusiness.industryMechanical EngineeringMechanical testingStructural engineeringComposite laminatesHybridBasalt fibersLap jointSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsBasalt fiberCeramics and CompositesAdhesionAdhesivebusinessE. Joints/joining
researchProduct

A Strain Sensing Structural Health Monitoring System for Delaminated Composite Structures

2012

Structural Health Monitoring (SHM) for composite materials is becoming a primary task due to their extended use in safety critical applications. Different methods, based on the use of piezoelectric transducers as well as of fiber optics, has been successfully proposed to detect and monitor damage in composite structural components with particular attention focused on delamination cracks.In the present paper a Structural Health Monitoring model, based on the use of piezoelectric sensors, already proposed by the authors for isotropic damaged components, is extended to delaminated composite structures. The dynamic behavior of the host damaged structure and the bonded piezoelectric sensors is m…

Damaged componentComposite materialMaterials scienceOptical fiberElectric sensing devicePiezoelectric sensorComposite numberDelaminated composite structureDynamic behaviorStructural healthStructure (composition) Piezoelectric transducersBoundary elementlaw.inventionSafety critical applicationlawStructural health monitoring systems Boundary element methodStructural componentDynamic loadSettore ING-IND/04 - Costruzioni E Strutture AerospazialiBoundary element methodStructural health monitoringbusiness.industryDelamination lengthIsotropyDelaminationDamaged structureGeneral MedicineStructural engineeringPiezoelectricityMechanical engineeringPrimary taskDynamic responseDelaminationDual reciprocityStrain sensingStructural health monitoringbusinessPiezoelectric sensorApplied Mechanics and Materials
researchProduct

Choice of ceramic for use in treatments with porcelain laminate veneers.

2006

El tratamiento mediante Frentes Laminados de Porcelana (FLP) se utiliza desde hace más de dos décadas para el tratamiento de problemas estéticos y/o funcionales, particularmente en el grupo anterior de las arcadas dentarias (1,2,3). La actual oferta en el mercado de cerámicas dentales aptas para este tipo de tratamiento, pero muy distintas en cuanto a composición, características ópticas y sistema de elaboración, hace complicada la selección del material más adecuado a cada paciente en particular. Proponemos un sistema sencillo de elección de la cerámica teniendo en cuenta las dos variables que más influirán en el resultado estético final: de un lado las características propias del diente (…

Dental ceramicsporcelain laminate veneersclasificación porcelanaUNESCO::CIENCIAS MÉDICASfrentes laminadosporcelain classificationesthetic:CIENCIAS MÉDICAS [UNESCO]Cerámica dentalestética
researchProduct

Initial strain effects in multilayer composite laminates

2001

A boundary integral formulation for the analysis of stress fields induced in composite laminates by initial strains, such as may be due to temperature changes and moisture absorption is presented. The study is formulated on the basis of the theory of generalized orthotropic thermo-elasticity and the governing integral equations are directly deduced through the generalized reciprocity theorem. A suitable expression of the problem fundamental solutions is given for use in computations. The resulting linear system of algebraic equations is obtained by the boundary element method and stress interlaminar distributions in the boundary-layer are calculated by using a boundary only discretization. …

DiscretizationApplied MathematicsNumerical analysisMathematical analysisGeneral EngineeringBoundary (topology)Composite laminatesOrthotropic materialIntegral equationComputational MathematicsAlgebraic equationBoundary element methodAnalysisMathematicsEngineering Analysis with Boundary Elements
researchProduct