Search results for "large eddy simulation"
showing 10 items of 52 documents
Large-Eddy Simulation of Flow and Heat Transfer in Compact Heat Exchangers
1994
LES results are presented for different heat exchanger geometries. Subgrid terms were usually computed by the Smagorinsky model; preliminary comparative results are also given for the ‘dynamic’ subgrid model. The numerical methods used were those implemented in a commercial general-purpose code (CFDS-FLOW3D); they included a finite-volume approach, colocated body-fitted grids, central differencing for the advection terms, the SIMPLEC algorithm, and Crank-Nicolson time stepping. Predictions arc compared with experimental measurements (including local Nu distributions), and with results from a low-Reynolds number k-e model. In most cases, LES was more ‘robust’ and required little more CPU tim…
Flow and Heat Transfer in Corrugated Passages: Direct and Large Eddy Simulation and Comparison with Experimental Results
1993
Direct and large-eddy numerical simulations are presented for the transitional and turbulent flow with heat transfer in corrugated passages, representative of compact heat exchangers such as rotary air preheaters (regenerators), at Reynolds number ranging from 103 to 104. Pressure drop and heat transfer results are compared with wind-tunnel experimental data; the agreement is quite satisfactory, and superior to that obtained by more traditional methods.
An experimental approach to efficiency calibration for gamma-ray spectrometric analysis of large air particulate filters
2013
Abstract A full-energy-peak efficiency (FEPE) calibration procedure for gamma-ray spectrometric analysis of air particulate samples collected on large filters is described herein. The experimental results are obtained for an unconventional measurement geometry, termed a “packet-sample”. The sample is obtained from a large cellulose filter (45 cm×45 cm) used to collect air particulate samples that is resized to dimensions suitable for spectrometric measurements (6 cm×6 cm×0.7 cm). To determine the FEPEs, many standards were created, i.e., some filters containing a small amount of ThO 2 and others containing a known amount of KCl. Efficiency curves obtained through best fits to experimental d…
INFLUENZA DELLA PENDENZA MEDIA DELLE CORRUGAZIONI DI UNA PARETE SCABRA SUL CAMPO DI MOTO TURBOLENTO
2008
Analisi dell’effetto di una scabrezza irregolare sulle strutture turbolente
2011
Analisi dell'effetto di scabrezze irregolari 2D e 3D sui campi di moto turbolenti.
2012
Large-Eddy Simulation in LSPIV techniques: the study of surface turbolence
2021
<p>In recent years, technological advances have been observed in environmental monitoring field, leading to a rapid spread of innovative technologies overcoming many historical challenges. In river monitoring field the use of image-based techniques provides non-intrusive measurements ensuring the best safety conditions for operators. The most used optical methods are the Large-Scale Particle Image Velocimetry (LSPIV) and the Large-Scale Particle Tracking Velocimetry (LSPTV).</p><p>In LSPIV and LSPTV techniques a floating tracer is introduced on the water surface and its motion is recorded by commercial devices (e.g. digital cameras). Resulting video…
A dynamic subgrid-scale tensorial eddy viscosity model
1999
In the Navier-Stokes equations the removal of the turbulent fluctuating velocities with a frequency above a certain fixed threshold, employed in the Large Eddy Simulation (LES), causes the appearance of a turbulent stress tensor that requires a number of closure assumptions. In this paper insufficiencies are demonstrated for those closure models which are based on a scalar eddy viscosity coefficient. A new model, based on a tensorial eddy viscosity, is therefore proposed; it employs the Germano identity [1] and allows dynamical evaluation of the single required input coefficient. The tensorial expression for the eddy viscosity is deduced by removing the widely used scalar assumption of the …
Large-Eddy Simulation: A Critical Survey of Models and Applications
1994
Rapid Compression Machine. 2013.
2013
A rapid compression machine is a type of ideal internal combustion reactor which is well suited for gas phase kinetics studies and physical processes of combustion. These studies consist in recording the evolution of the reactivity and of the composition of the reacting mixtures as a function of temperature, pressure, residence time and the composition of the compressed mixture. Pressure measurement is used to analyse the evolution of the combustion process, but more recent studies couple pressure measurement with optical diagnostics in order to assess the homogeneity of the combustion process. Speciation based on rapid sampling of the intermediates formed, during the oxidation of the fuel,…