Search results for "learning machine"

showing 2 items of 32 documents

Improvements and applications of the elements of prototype-based clustering

2018

Clustering or cluster analysis is an essential part of data mining, machine learning, and pattern recognition. The most popularly applied clustering methods are partitioning-based or prototype-based methods. Prototype-based clustering methods usually have easy implementability and good scalability. These methods, such as K-means clustering, have been used for different applications in various fields. On the other hand, prototype-based clustering methods are typically sensitive to initialization, and the selection of the number of clusters for knowledge discovery purposes is not straightforward. In the era of big data, in high-velocity, ever-growing datasets, which can also be erroneous, outl…

random projectionparallel computingknowledge discoveryclustering initializationminimal learning machinedata miningprototype-based clusteringmachine learningkoneoppiminenbig datarinnakkaiskäsittelyklusterianalyysitiedonlouhintarobust clusteringK-means
researchProduct

Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression

2020

Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methods, the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM), in problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential, emphasizing the utility of the problem transformation especially with the EMLM. peerReviewed

the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM)koneoppiminenemphasizing the utility of the problem transformation especially with the EMLM.Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methodsin problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential
researchProduct