Search results for "learning theory"
showing 10 items of 216 documents
Supporting group decision makers to locate temporary relief distribution centres after sudden-onset disasters
2020
International audience; In the humanitarian response, multiple decision-makers (DMs) need to collaborate in various problems, such as locating temporary relief distribution centres (RDCs). Several studies have argued that maximising demand coverage, reducing logistics costs and minimising response time are among the critical objectives when locating RDCs after a sudden-onset disaster. However, these objectives are often conflicting and the trade-offs can considerably complicate the situation for finding a consensus.To address the challenge and support the DMs, we suggest investigating the stability of non-dominated alternatives derived from a multi-objective model based on Monte Carlo Simul…
The ecogenetic link between demography and evolution: can we bridge the gap between theory and data?
2007
Calls to understand the links between ecology and evolution have been common for decades. Population dynamics, i.e. the demographic changes in populations, arise from life history decisions of individuals and thus are a product of selection, and selection, on the contrary, can be modified by such dynamical properties of the population as density and stability. It follows that generating predictions and testing them correctly requires considering this ecogenetic feedback loop whenever traits have demographic consequences, mediated via density dependence (or frequency dependence). This is not an easy challenge, and arguably theory has advanced at a greater pace than empirical research. Howeve…
Effects of multiple stressors on the dimensionality of ecological stability
2021
Abstract Ecological stability is a multidimensional construct. Investigating multiple stability dimensions is key to understand how ecosystems respond to disturbance. Here, we evaluated the single and combined effects of common agricultural stressors (insecticide, herbicide and nutrients) on four dimensions of stability (resistance, resilience, recovery and invariability) and on the overall dimensionality of stability (DS) using the results of a freshwater mesocosm experiment. Functional recovery and resilience to pesticides were enhanced in nutrient‐enriched systems, whereas compositional recovery was generally not achieved. Pesticides did not affect compositional DS, whereas functional DS…
Feasibility Analysis For Constrained Model Predictive Control Based Motion Cueing Algorithm
2019
International audience; This paper deals with motion control for an 8-degree-of-freedom (DOF) high performance driving simulator. We formulate a constrained optimal control that defines the dynamical behavior of the system. Furthermore, the paper brings together various methodologies for addressing feasibility issues arising in implicit model predictive control-based motion cueing algorithms.The implementation of different techniques is described and discussed subsequently. Several simulations are carried out in the simulator platform. It is observed that the only technique that can provide ensured closed-loop stability by assuring feasibility over all prediction horizons is a braking law t…
A class of third order iterative Kurchatov–Steffensen (derivative free) methods for solving nonlinear equations
2019
Abstract In this paper we show a strategy to devise third order iterative methods based on classic second order ones such as Steffensen’s and Kurchatov’s. These methods do not require the evaluation of derivatives, as opposed to Newton or other well known third order methods such as Halley or Chebyshev. Some theoretical results on convergence will be stated, and illustrated through examples. These methods are useful when the functions are not regular or the evaluation of their derivatives is costly. Furthermore, special features as stability, laterality (asymmetry) and other properties can be addressed by choosing adequate nodes in the design of the methods.
Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay
2014
This paper is concerned with the problems of finite-time stability FTS and finite-time stabilisation for a class of nonlinear systems with time-varying delay, which can be represented by Takagi–Sugeno fuzzy system. Some new delay-dependent FTS conditions are provided and applied to the design problem of finite-time fuzzy controllers. First, based on an integral inequality and a fuzzy Lyapunov–Krasovskii functional, a delay-dependent FTS criterion is proposed for open-loop fuzzy system by introducing some free fuzzy weighting matrices, which are less conservative than other existing ones. Then, the parallel distributed compensation controller is designed to ensure FTS of the time-delay fuzzy…
Online fitted policy iteration based on extreme learning machines
2016
Reinforcement learning (RL) is a learning paradigm that can be useful in a wide variety of real-world applications. However, its applicability to complex problems remains problematic due to different causes. Particularly important among these are the high quantity of data required by the agent to learn useful policies and the poor scalability to high-dimensional problems due to the use of local approximators. This paper presents a novel RL algorithm, called online fitted policy iteration (OFPI), that steps forward in both directions. OFPI is based on a semi-batch scheme that increases the convergence speed by reusing data and enables the use of global approximators by reformulating the valu…
Game Theoretic Decentralized Feedback Controls in Markov Jump Processes
2017
This paper studies a decentralized routing problem over a network, using the paradigm of mean-field games with large number of players. Building on a state-space extension technique, we turn the problem into an optimal control one for each single player. The main contribution is an explicit expression of the optimal decentralized control which guarantees the convergence both to local and to global equilibrium points. Furthermore, we study the stability of the system also in the presence of a delay which we model using an hysteresis operator. As a result of the hysteresis, we prove existence of multiple equilibrium points and analyze convergence conditions. The stability of the system is ill…
New results on stability analysis and stabilization of time-delay continuous Markovian jump systems with partially known rates matrix
2015
Summary In this note, the problems of stability analysis and controller synthesis of Markovian jump systems with time-varying delay and partially known transition rates are investigated via an input–output approach. First, the system under consideration is transformed into an interconnected system, and new results on stochastic scaled small-gain condition for stochastic interconnected systems are established, which are crucial for the problems considered in this paper. Based on the system transformation and the stochastic scaled small-gain theorem, stochastic stability of the original system is examined via the stochastic version of the bounded realness of the transformed forward system. Th…
Adjusted bat algorithm for tuning of support vector machine parameters
2016
Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…