Search results for "ligands"
showing 10 items of 721 documents
Influencing the self‐sorting behavior of [2.2]paracyclophane based ligands by introducing isostructural binding motifs
2020
Two isostructural ligands with either nitrile ( L nit ) or isonitrile ( L iso ) moieties directly connected to a [2.2]paracyclophane backbone with pseudo‐meta substitution pattern have been synthesized. The ligand itself ( L nit ) or its precursors ( L iso ) were resolved via HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum‐chemical simulated and experimental ECD‐spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf) 2 ] differ in their composition: whereas L nit forms dinuclear complexes L iso exclusively forms trinuc…
[Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster
2016
Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag67(SPhMe2)32(PPh3)8]3+. The crystal structure shows an Ag23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag23 core was formed through an unprecedented centered cuboctahedron, i.e.,…
Bulky Surface Ligands Promote Surface Reactivities of [Ag141X12(S-Adm)40]3+ (X=Cl, Br, I) Nanoclusters: Models for Multiple-Twinned Nanoparticles
2017
Surface ligands play important roles in controlling the size and shape of metal nanoparticles and their surface properties. In this work, we demonstrate that the use of bulky thiolate ligands, along with halides, as the surface capping agent promotes the formation of plasmonic multiple-twinned Ag nanoparticles with high surface reactivities. The title nanocluster [Ag141X12(S-Adm)40]3+ (where X = Cl, Br, I; S-Adm = 1-adamantanethiolate) has a multiple-shell structure with an Ag71 core protected by a shell of Ag70X12(S-Adm)40. The Ag71 core can be considered as 20 frequency-two Ag10 tetrahedra fused together with a dislocation that resembles multiple-twinning in nanoparticles. The nanocluster…
Synthesis and Structure-Affinity Relationships of Spirocyclic Benzopyrans with Exocyclic Amino Moiety
2019
σ1 and/or σ2 receptors play a crucial role in pathological conditions such as pain, neurodegenerative disorders, and cancer. A set of spirocyclic cyclohexanes with diverse O-heterocycles and amino moieties (general structure III) was prepared and pharmacologically evaluated. In structure-activity relationships studies, the σ1 receptor affinity and σ1:σ2 selectivity were correlated with the stereochemistry, the kind and substitution pattern of the O-heterocycle, and the substituents at the exocyclic amino moiety. cis-configured 2-benzopyran cis-11b bearing a methoxy group and a tertiary cyclohexylmethylamino moiety showed the highest σ1 affinity ( Ki = 1.9 nM) of this series of compounds. In…
A Unified AMBER-Compatible Molecular Mechanics Force Field for Thiolate-Protected Gold Nanoclusters.
2016
We present transferable AMBER-compatible force field parameters for thiolate-protected gold nanoclusters. Five different sized clusters containing both organo-soluble and water-soluble thiolate ligands served as test systems in MD simulations, and parameters were validated against DFT and experimental results. The cluster geometries remain intact during the MD simulations in various solvents, and structural fluctuations and energetics showed agreement with DFT calculations. Experimental diffusion coefficients and crystal structures were also reproduced with sufficient accuracy. The presented parameter set contains the minimum number of cluster-specific parameters enabling the use of these p…
Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics
2016
The first hyperpolarizabilities of [Au25(SR)18](-1/0) and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18](-1/0), protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics.
The Role of the Anchor Atom in the Ligand of the Monolayer-Protected Au25(XR)18– Nanocluster
2015
We present a density functional theory (DFT) investigation on the role of the anchor atom and ligand on the structural, electronic, and optical properties of the anionic Au25(XR)18– nanocluster (X = S, Se, Te; R = H, CH3, and (CH2)2Ph). Substituting the anchor atom with other group 16 elements induces subtle changes in the Au–Au and Au–X bond lengths and polarization of the covalent bond. The changes in the electronic structure based on substituting both the anchor and R groups are presented through careful analysis of the density of states and theoretical determined optical spectra. We give a detailed side-by-side comparison into the structural, electronic, and optical properties of Au25(X…
Weak Interactions between Trivalent Pnictogen Centers: Computational Analysis of Bonding in Dimers X3E···EX3 (E = Pnictogen, X = Halogen)
2009
The nature of weak interactions in dimers X3E···EX3 (E = N−Bi, X = F−I) was investigated by wave function and density functional theory (DFT)-based methods. Out of the 20 systems studied, 10 are found to be bound at the CP-MP2 and LMP2 levels of theory. Detailed partition of the interaction energy into different components revealed that dispersion is the primary force holding the dimers together but there also exists an important ionic component whose contribution increases with increasing halogen size. As expected, standard density functionals fail to describe bonding in the studied systems. However, the performance of DFT methods can be easily improved via empirical dispersion correction …
New Tetraphosphane Ligands {(X2P)2NC6H4N(PX2)2} (X = Cl, F, OMe, OC6H4OMe-o): Synthesis, Derivatization, Group 10 and 11 Metal Complexes and Catalyti…
2008
The reaction of p-phenylenediamine with excess PCl3 in the presence of pyridine affords p-C6H4[N(PCl2)2]2 (1) in good yield. Fluorination of 1 with SbF3 produces p-C6H4[N(PF2)2]2 (2). The aminotetra(phosphonites) p-C6H4[N{P(OC6H4OMe-o)2}2]2 (3) and p-C6H4[N{P(OMe)2}2]2 (4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H2O2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C6H4[N{P(O)(OC6H4OMe-o)2}2]2 (5), p-C6H4[N{P(S)(OMe)2}2]2 (6), and p-C6H4[N{P(Se)(OMe)2}2]2 (7) in good yield. Reactions of 3 with [M(COD)Cl2] (M = Pd or Pt) (COD = cycloocta-1,5-diene)…
Alkyl-Substituted Aminobis(phosphonates) : Efficient Precipitating Agents for Rare Earth Elements, Thorium, and Uranium in Aqueous Solutions
2021
The efficient and environmentally sustainable separation process for rare earth elements (REE), especially for adjacent lanthanoids, remains a challenge due to the chemical similarity of REEs. Tetravalent actinoids, thorium, and traces of uranium are also present in concentrates of REEs, making their separation relevant. This study reports six simple water-soluble aminobis(phosphonate) ligands, RN[CH2P(O)(OH)2]2 (1 R = CH2CH3, 2 R = (CH2)2CH3, 3 R = (CH2)3CH3, 4 R = (CH2)4CH3, 5 R = (CH2)5CH3, 6 R = CH2CH(C2H5)(CH2)3CH3) as precipitating agents for REEs, Th, and U, as well as gives insight into the coordination modes of the utilized ligands with REEs at the molecular level. Aminobis(phospho…