Search results for "linear prediction"
showing 8 items of 18 documents
Non-separable local polynomial regression cell-average multiresolution operators. Application to compression of images
2016
Abstract Cell-average multiresolution Harten׳s algorithms have been satisfactorily used to compress data. These schemes are based on two operators: decimation and prediction. The accuracy of the method depends on the prediction operator. In order to design a precise function, local polynomial regression has been used in the last years. This paper is devoted to construct a family of non-separable two-dimensional linear prediction operators approximating the real values with this procedure. Some properties are proved as the order of the scheme and the stability. Some numerical experiments are performed comparing the new methods with the classical linear method.
Fitting generalized linear models with unspecified link function: A P-spline approach
2008
Generalized linear models (GLMs) outline a wide class of regression models where the effect of the explanatory variables on the mean of the response variable is modelled throughout the link function. The choice of the link function is typically overlooked in applications and the canonical link is commonly used. The estimation of GLMs with unspecified link function is discussed, where the linearity assumption between the link and the linear predictor is relaxed and the unspecified relationship is modelled flexibly by means of P-splines. An estimating algorithm is presented, alternating estimation of two working GLMs up to convergence. The method is applied to the analysis of quit behavior of…
A note on adjusted responses, fitted values and residuals in Generalized Linear Models
2014
Adjusted responses, adjusted fitted values and adjusted residuals are known to play in Generalized Linear Models the role played in Linear Models by observations, fitted values and ordinary residuals. We think this parallelism, which was widely recognized and used in the early literature on Generalized Linear Models, has been somewhat overlooked in more recent presentations. We revise this parallelism, systematizing and proving some results that are either scattered or not satisfactorily spelled out in the literature. In particular, we formally derive the asymptotic dispersion matrix of the (scaled) adjusted residuals, by proving that in Generalized Linear Models the fitted values are asym…
A method for the time-varying nonlinear prediction of complex nonstationary biomedical signals
2009
A method to perform time-varying (TV) nonlinear prediction of biomedical signals in the presence of nonstationarity is presented in this paper. The method is based on identification of TV autoregressive models through expansion of the TV coefficients onto a set of basis functions and on k -nearest neighbor local linear approximation to perform nonlinear prediction. The approach provides reasonable nonlinear prediction even for TV deterministic chaotic signals, which has been a daunting task to date. Moreover, the method is used in conjunction with a TV surrogate method to provide statistical validation that the presence of nonlinearity is not due to nonstationarity itself. The approach is t…
On the use of generalized harmonic means in image processing using multiresolution algorithms
2019
In this paper we design a family of cell-average nonlinear prediction operators that make use of the generalized harmonic means and we apply the resulting schemes to image processing. The new famil...
Comprehensive Strategy for Proton Chemical Shift Prediction: Linear Prediction with Nonlinear Corrections
2014
A fast 3D/4D structure-sensitive procedure was developed and assessed for the chemical shift prediction of protons bonded to sp3carbons, which poses the maybe greatest challenge in the NMR spectral parameter prediction. The LPNC (Linear Prediction with Nonlinear Corrections) approach combines three well-established multivariate methods viz. the principal component regression (PCR), the random forest (RF) algorithm, and the k nearest neighbors (kNN) method. The role of RF is to find nonlinear corrections for the PCR predicted shifts, while kNN is used to take full advantage of similar chemical environments. Two basic molecular models were also compared and discussed: in the MC model the desc…
Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological N…
2020
The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state&ndash
Pairwise and higher-order measures of brain-heart interactions in children with temporal lobe epilepsy
2022
Abstract Objective. While it is well-known that epilepsy has a clear impact on the activity of both the central nervous system (CNS) and the autonomic nervous system (ANS), its role on the complex interplay between CNS and ANS has not been fully elucidated yet. In this work, pairwise and higher-order predictability measures based on the concepts of Granger Causality (GC) and partial information decomposition (PID) were applied on time series of electroencephalographic (EEG) brain wave amplitude and heart rate variability (HRV) in order to investigate directed brain-heart interactions associated with the occurrence of focal epilepsy. Approach. HRV and the envelopes of δ and α EEG activity re…