Search results for "linear system"
showing 10 items of 1558 documents
Direct adaptive tracking control for a class of pure-feedback stochastic nonlinear systems based on fuzzy-approximation
2014
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/462468 Open Access The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around …
Robust adaptive neural backstepping control for a class of nonlinear systems with dynamic uncertainties
2014
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/658671 Open Access This paper is concerned with adaptive neural control of nonlinear strict-feedback systems with nonlinear uncertainties, unmodeled dynamics, and dynamic disturbances. To overcome the difficulty from the unmodeled dynamics, a dynamic signal is introduced. Radical basis function (RBF) neural networks are employed to model the packaged unknown nonlinearities, and then an adaptive neural control approach is developed by using backstepping technique. The proposed controller guarantees semiglobal boundedness of all the signals in the…
Qualitative Analysis of Differential, Difference Equations, and Dynamic Equations on Time Scales
2015
and Applied Analysis 3 thank Guest Editors Josef Dibĺik, Alexander Domoshnitsky, Yuriy V. Rogovchenko, Felix Sadyrbaev, and Qi-Ru Wang for their unfailing support with editorial work that ensured timely preparation of this special edition. Tongxing Li Josef Dibĺik Alexander Domoshnitsky Yuriy V. Rogovchenko Felix Sadyrbaev Qi-Ru Wang
Observer-Based ${H}_{\infty }$ Control Design for Nonlinear Networked Control Systems with Limited Information
2013
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/604249 Open Access This paper is concerned with the problem of designing a robust observer-based H∞ controller for discrete-time networked systems with limited information. An improved networked control system model is proposed and the effects of random packet dropout, time-varying delay, and quantization are considered simultaneously. Based on the obtained model, a stability criterion is developed by constructing an appropriate Lyapunov-Krasovskii functional and sufficient conditions for the existence of a dynamic quantized output feedback cont…
Modelling and prediction of retention in high-performance liquid chromatography by using neural networks
1995
Multi-layer feed-forward neural networks trained with an error back-propagation algorithm have been used to model retention behaviour of liquid chromatography as a function of the composition of the mobile phases. Conventional hydro-organic and micellar mobile phases were considered. Accurate retention modelling and prediction have been achieved using mobile phases defined by two, three and four parameters. With micellar mobile phases, the parameters involved included the concentrations of surfactant and organic modifier, pH and temperature. It is shown that neural networks provide a competitive tool to model varied inherent nonlinear relationships of retention behaviour with respect to the…
Polarization calibration techniques for the new-generation VLBI
2020
The calibration and analysis of polarization observations in Very Long Baseline Interferometry (VLBI) requires the use of specific algorithms that suffer from several limitations, closely related to assumptions in the data properties that may not hold in observations taken with new-generation VLBI equipment. Nowadays, the instantaneous bandwidth achievable with VLBI backends can be as high as several GHz, covering several radio bands simultaneously. In addition, the sensitivity of VLBI observations with state-of-the-art equipment may reach dynamic ranges of tens of thousands, both in total intensity and in polarization. In this paper, we discuss the impact of the limitations of common VLBI …
The initial boundary value problem for free-evolution formulations of General Relativity
2017
We consider the initial boundary value problem for free-evolution formulations of general relativity coupled to a parametrized family of coordinate conditions that includes both the moving puncture and harmonic gauges. We concentrate primarily on boundaries that are geometrically determined by the outermost normal observer to spacelike slices of the foliation. We present high-order-derivative boundary conditions for the gauge, constraint violating and gravitational wave degrees of freedom of the formulation. Second order derivative boundary conditions are presented in terms of the conformal variables used in numerical relativity simulations. Using Kreiss-Agranovich-Metivier theory we demons…
Outer boundary conditions for Einstein's field equations in harmonic coordinates
2007
We analyze Einstein's vacuum field equations in generalized harmonic coordinates on a compact spatial domain with boundaries. We specify a class of boundary conditions which is constraint-preserving and sufficiently general to include recent proposals for reducing the amount of spurious reflections of gravitational radiation. In particular, our class comprises the boundary conditions recently proposed by Kreiss and Winicour, a geometric modification thereof, the freezing-Psi0 boundary condition and the hierarchy of absorbing boundary conditions introduced by Buchman and Sarbach. Using the recent technique developed by Kreiss and Winicour based on an appropriate reduction to a pseudo-differe…
Multiplicity of Solutions for Second Order Two-Point Boundary Value Problems with Asymptotically Asymmetric Nonlinearities at Resonance
2007
Abstract Estimations of the number of solutions are given for various resonant cases of the boundary value problem 𝑥″ + 𝑔(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑥′), 𝑥(𝑎) cos α – 𝑥′(𝑎) sin α = 0, 𝑥(𝑏) cos β – 𝑥′(𝑏) sin β = 0, where 𝑔(𝑡, 𝑥) is an asymptotically linear nonlinearity, and 𝑓 is a sublinear one. We assume that there exists at least one solution to the BVP.
Asynchronous L1 control of delayed switched positive systems with mode-dependent average dwell time
2014
Abstract This paper investigates the stability and asynchronous L 1 control problems for a class of switched positive linear systems (SPLSs) with time-varying delays by using the mode-dependent average dwell time (MDADT) approach. By allowing the co-positive type Lyapunov–Krasovskii functional to increase during the running time of active subsystems, a new stability criterion for the underlying system with MDADT is first derived. Then, the obtained results are extended to study the issue of asynchronous L 1 control, where “asynchronous” means that the switching of the controllers has a lag with respect to that of system modes. Sufficient conditions are provided to guarantee that the resulti…