Search results for "linear system"
showing 10 items of 1558 documents
Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays
2013
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/359265 Open Access This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabi…
Exponential stability analysis of Markovian jump nonlinear systems with mixed time delays and partially known transition probabilities
2013
In this paper, the problem of exponential stability is studied for a class of Markovian jump neutral nonlinear systems with mixed neutral and discrete time delays. By Lyapunov-Krasovskii function approach, a novel mean-square exponential stability criterion is derived for the situation that the system's transition rates are partially or completely accessible. Finally, some numerical examples are provided to illustrate the effectiveness of the proposed methods.
High performance algorithms based on a new wawelet expansion for time dependent acoustics obstale scattering
2007
This paper presents a highly parallelizable numerical method to solve time dependent acoustic obstacle scattering problems. The method proposed is a generalization of the ``operator expansion method" developed by Recchioni and Zirilli [SIAM J.~Sci.~Comput., 25 (2003), 1158-1186]. The numerical method proposed reduces, via a perturbative approach, the solution of the scattering problem to the solution of a sequence of systems of first kind integral equations. The numerical solution of these systems of integral equations is challenging when scattering problems involving realistic obstacles and small wavelengths are solved. A computational method has been developed to solve these challenging p…
Stability of degenerate parabolic Cauchy problems
2015
We prove that solutions to Cauchy problems related to the $p$-parabolic equations are stable with respect to the nonlinearity exponent $p$. More specifically, solutions with a fixed initial trace converge in an $L^q$-space to a solution of the limit problem as $p>2$ varies.
On solving separable block tridiagonal linear systems using a GPU implementation of radix-4 PSCR method
2018
Partial solution variant of the cyclic reduction (PSCR) method is a direct solver that can be applied to certain types of separable block tridiagonal linear systems. Such linear systems arise, e.g., from the Poisson and the Helmholtz equations discretized with bilinear finite-elements. Furthermore, the separability of the linear system entails that the discretization domain has to be rectangular and the discretization mesh orthogonal. A generalized graphics processing unit (GPU) implementation of the PSCR method is presented. The numerical results indicate up to 24-fold speedups when compared to an equivalent CPU implementation that utilizes a single CPU core. Attained floating point perfor…
Fast Poisson solvers for graphics processing units
2013
Two block cyclic reduction linear system solvers are considered and implemented using the OpenCL framework. The topics of interest include a simplified scalar cyclic reduction tridiagonal system solver and the impact of increasing the radix-number of the algorithm. Both implementations are tested for the Poisson problem in two and three dimensions, using a Nvidia GTX 580 series GPU and double precision floating-point arithmetic. The numerical results indicate up to 6-fold speed increase in the case of the two-dimensional problems and up to 3- fold speed increase in the case of the three-dimensional problems when compared to equivalent CPU implementations run on a Intel Core i7 quad-core CPU…
Singular Neumann (p, q)-equations
2019
We consider a nonlinear parametric Neumann problem driven by the sum of a p-Laplacian and of a q-Laplacian and exhibiting in the reaction the competing effects of a singular term and of a resonant term. Using variational methods together with suitable truncation and comparison techniques, we show that for small values of the parameter the problem has at least two positive smooth solutions.
Seismic Behavior of Lisbon Mixed Masonry-RC Buildings With Historical Value: A Contribution for the Practical Assessment
2018
The fact that linear analysis is still the most used procedure in the design engineering offices, studies which addresses issues associated to the estimation of the structural behavior factor values are relevant. In this study, the behavior factor of a particular type of mixed masonry-reinforced concrete buildings in Lisbon is estimated. The typology chosen in this study represents 30% of building stock in Lisbon; these buildings were built between 1930 and 1960 and thus were designed without considering the seismic-design requirements proposed in current codes. The evaluation of the behavior factors was based on the use of nonlinear static analyses, performed in the form of the sensitivity…
Some Non-linear Geometrical Properties of Banach Spaces
2014
In this survey we report on very recent results about some non-linear geometrical properties of many classes of real and complex Banach spaces and uniform algebras, including the ball algebra \(\fancyscript{A}_u(B_X)\) of all uniformly continuous functions on the closed unit ball and holomorphic on the open unit ball of a complex Banach space \(X\). These geometrical properties are: Polynomial numerical index, Polynomial Daugavet property and Bishop-Phelp-Bollobas property for multilinear mappings.
A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbati…
2010
Accepted version of an article in the journal: Journal of the Franklin Institute-Engineering and Applied Mathematics. The definitive version can be found on Sciverse: http://dx.doi.org/10.1016/j.jfranklin.2010.03.004 In this paper, the problem of robust fault detection filter (RFDF) design for a class of linear systems with some nonlinear perturbations and mixed neutral and discrete time-varying delays is investigated. By using a descriptor technique, Lyapunov-Krasovskii functional and a suitable change of variables, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities (LMIs) to synthesize the residual generation scheme. Based on the Luen…