Search results for "long-range"

showing 10 items of 54 documents

On the vibrations of a mechanically based non-local beam model

2012

The vibration problem of a Timoshenko non-local beam is addressed. The beam model involves assuming that the equilibrium of each volume element is attained due to contact forces and long-range body forces exerted, respectively, by adjacent and non-adjacent volume elements. The contact forces result in the classical Cauchy stress tensor while the long-range forces are taken as depending on the product of the interacting volume elements and on their relative displacement through a material-dependent distance-decaying function. To derive the motion equations and the related mechanical boundary conditions, the Hamilton's principle is applied The vibration problem of a Timoshenko non-local beam …

Timoshenko beam theoryBody forceNon-local elasticityGeneral Computer ScienceGeneral Physics and AstronomyContact forceLong-range interactionsymbols.namesakeFree vibrations; Hamilton's principle; Long-range interactions; Non-local elasticity; Timoshenko beam theoryGeneral Materials ScienceHamilton's principleVolume elementPhysicsCauchy stress tensorEquations of motionFree vibrationGeneral ChemistryMechanicsComputational MathematicsTimoshenko beam theoryClassical mechanicsHamilton's principleMechanics of MaterialssymbolsSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)Computational Materials Science
researchProduct

Finite element method for a nonlocal Timoshenko beam model

2014

A finite element method is presented for a nonlocal Timoshenko beam model recently proposed by the authors. The model relies on the key idea that nonlocal effects consist of long-range volume forces and moments exchanged by non-adjacent beam segments, which contribute to the equilibrium of a beam segment along with the classical local stress resultants. The long-range volume forces/moments are linearly depending on the product of the volumes of the interacting beam segments, and their relative motion measured in terms of the pure beam deformation modes, through appropriate attenuation functions governing the spatial decay of nonlocal effects. In this paper, the beam model is reformulated wi…

Timoshenko beam theoryFinite element methodApplied MathematicsGeneral EngineeringStiffnessPure deformation modeComputer Graphics and Computer-Aided DesignFinite element methodLong-range interactionClassical mechanicsVariational formulationBending stiffnessStress resultantsNonlocal Timoshenko beammedicineDirect stiffness methodmedicine.symptomAnalysisBeam (structure)Stiffness matrixMathematics
researchProduct

A mechanically based approach to non-local beam theories

2011

A mechanically based non-local beam theory is proposed. The key idea is that the equilibrium of each beam volume element is attained due to contact forces and long-range body forces exerted, respectively, by adjacent and non-adjacent volume elements. The contact forces result in the classical Cauchy stress tensor while the long-range forces are modeled as depending on the product of the interacting volume elements, their relative displacement and a material-dependent distance-decaying function. To derive the beam equilibrium equations and the pertinent mechanical boundary conditions, the total elastic potential energy functional is used based on the Timoshenko beam theory. In this manner, t…

Timoshenko beam theoryPhysicsBody forceNon-local elasticityCauchy stress tensorMechanical EngineeringElastic energyTotal elastic potential energy functionalCondensed Matter PhysicsContact forceLong-range interactionTimoshenko beam theoryClassical mechanicsMechanics of MaterialsMechanics of MaterialGeneral Materials ScienceMaterials Science (all)Boundary value problemVolume elementBeam (structure)Civil and Structural EngineeringInternational Journal of Mechanical Sciences
researchProduct

Finite-Element Formulation of a Nonlocal Hereditary Fractional-Order Timoshenko Beam

2017

AbstractA mechanically-based nonlocal Timoshenko beam model, recently proposed by the authors, hinges on the assumption that nonlocal effects can be modeled as elastic long-range volume forces and moments mutually exerted by nonadjacent beam segments, which contribute to the equilibrium of any beam segment along with the classical local stress resultants. Long-range volume forces/moments linearly depend on the product of the volumes of the interacting beam segments, and on pure deformation modes of the beam, through attenuation functions governing the space decay of nonlocal effects. This paper investigates the response of this nonlocal beam model when viscoelastic long-range interactions a…

Timoshenko beam theoryPhysicsDiscretizationMechanical EngineeringNonlocal viscoelasticityEquations of motion02 engineering and technologyFractional calculu021001 nanoscience & nanotechnologyTimoshenko beamFinite element methodViscoelasticityFractional calculusNonlocal dampingLong-range interaction020303 mechanical engineering & transportsClassical mechanics0203 mechanical engineeringMechanics of MaterialsStress resultantsSettore ICAR/08 - Scienza Delle Costruzioni0210 nano-technologyBeam (structure)Journal of Engineering Mechanics
researchProduct

A new displacement-based framework for non-local Timoshenko beams

2015

In this paper, a new theoretical framework is presented for modeling non-locality in shear deformable beams. The driving idea is to represent non-local effects as long-range volume forces and moments, exchanged by non-adjacent beam segments as a result of their relative motion described in terms of pure deformation modes of the beam. The use of these generalized measures of relative motion allows constructing an equivalent mechanical model of non-local effects. Specifically, long-range volume forces and moments are associated with three spring-like connections acting in parallel between couples of non-adjacent beam segments, and separately accounting for pure axial, pure bending and pure sh…

Timoshenko beam theoryPhysicsMechanical EngineeringSpring-like connectionMechanicsPure shearPure deformation modeNon localCondensed Matter PhysicsPotential energyLong-range interactionClassical mechanicsShear (geology)Non-local Timoshenko beamMechanics of MaterialsLong-range interactions; Non-local Timoshenko beam; Pure deformation modes; Spring-like connections; Mechanical Engineering; Mechanics of Materials; Condensed Matter PhysicsPure bendingPhysics::Accelerator PhysicsMechanics of MaterialMinificationSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)
researchProduct

Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces.

2021

The recent pandemic triggered numerous societal efforts aimed to control and limit the spread of SARS-CoV-2. One of these aspects is related on how the virion interacts with inanimate surfaces, which might be the source of secondary infection. Although recent works address the adsorption of the spike protein on surfaces, there is no information concerning the long-range interactions between spike and surfaces, experimented by the virion when is dispersed in the droplet before its possible adsorption. Some descriptors, namely the interaction potentials per single protein and global potentials, were calculated in this work. These descriptors, evaluated for the closed and open states of the sp…

chemistry.chemical_classificationclosed and open structuresDensity Functional calculationsSecondary infectionIonic bondingFiltration and SeparationPolymerArticleAnalytical Chemistrychemistry.chemical_compoundAdsorptionPolylactic acidchemistryChemical physicsCovalent bondlong-range interaction potential energiesPolyethylene terephthalateNon-covalent interactionssurface affinity descriptorsSARS-CoV-2 spike proteinsMolecular Mechanics and Dynamics simulationsSeparation and purification technology
researchProduct

Persistence in complex systems

2022

Persistence is an important characteristic of many complex systems in nature, related to how long the system remains at a certain state before changing to a different one. The study of complex systems' persistence involves different definitions and uses different techniques, depending on whether short-term or long-term persistence is considered. In this paper we discuss the most important definitions, concepts, methods, literature and latest results on persistence in complex systems. Firstly, the most used definitions of persistence in short-term and long-term cases are presented. The most relevant methods to characterize persistence are then discussed in both cases. A complete literature r…

fractal dimensionFOS: Computer and information sciencesComplex systemsRenewable energyglobal solar-radiationsystems' statesComplex networksGeneral Physics and AstronomyFOS: Physical scienceslong-term and short-term methodsadaptationzero-temperature dynamicsDynamical Systems (math.DS)Physics - GeophysicsneurosciencememoryMethodology (stat.ME)PersistenceOptimization and planningMemoryMachine learningearthquake magnitude seriesFOS: MathematicsAtmosphere and climateMathematics - Dynamical SystemsAdaptationcomplex systemslow-visibility eventstime-seriesStatistics - Methodologyinflation persistenceLong-term and short-term methodsdetrended fluctuation analysislong-range correlationspersistencecomplex networksSystems’ statesEconomyneural networksrenewable energyGeophysics (physics.geo-ph)atmosphere and climateeconomymachine learningoptimization and planningNeural networkswind-speedNeuroscience
researchProduct

Investigating Long-Range Dependence in E-Commerce Web Traffic

2016

This paper addresses the problem of investigating long-range dependence (LRD) and self-similarity in Web traffic. Popular techniques for estimating the intensity of LRD via the Hurst parameter are presented. Using a set of traces of a popular e-commerce site, the presence and the nature of LRD in Web traffic is examined. Our results confirm the self-similar nature of traffic at a Web server input, however the resulting estimates of the Hurst parameter vary depending on the trace and the technique used.

h indexWeb serverweb serverSelf-similarityComputer science02 engineering and technologyE-commercecomputer.software_genre01 natural sciencesSet (abstract data type)010104 statistics & probabilityWeb traffichurst indexlong-range dependence0202 electrical engineering electronic engineering information engineeringRange (statistics)0101 mathematicsTRACE (psycholinguistics)Hurst exponenthurst parameterself-similaritybusiness.industryweb trafficHTTP traffic020201 artificial intelligence & image processingData miningbusinesscomputer
researchProduct

Investigations of Anisotropic Flow Using Multiparticle Azimuthal Correlations in pp, p-Pb, Xe-Xe, and Pb-Pb Collisions at the LHC

2019

Measurements of anisotropic flow coefficients ($v_n$) and their cross-correlations using two- and multi-particle cumulant methods are reported in collisions of pp at $\sqrt{s} = 13$ TeV, p-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV, Xe-Xe at $\sqrt{s_{_{\rm NN}}} = 5.44$ TeV, and Pb-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV recorded with the ALICE detector. The multiplicity dependence of $v_n$ is studied in a very wide range from 20 to 3000 particles produced in the mid-rapidity region $|��|<0.8$ for the transverse momentum range $0.2 < p_{\rm T} < 3.0$ GeV/$c$. An ordering of the coefficients $v_2 > v_3 > v_4$ is found in pp and p-Pb collisions, similar to that seen in large coll…

p p: scatteringheavy ion: scatteringcollectivehigh [multiplicity]FOS: Physical scienceshiukkasfysiikkatransverse momentumPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEHeavy Ion Experimentsscattering [heavy ion]anisotropic flowscattering [p p]system-size dependence[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experimentddc:530LHC; ALICE; anisotropic flowNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentp nucleus: scatteringNuclear Physicshep-exangular correlationmultiplicity: highscattering [p nucleus]heavy-ion collisionsmultiplicity: dependenceflow: anisotropy13000 GeV-cms/nucleon 5440 GeV-cms/nucleon 5020 GeV-cms/nucleonquark gluon plasmadependence [multiplicity]long-rangeCERN LHC CollLHCParticle Physics - Experimentanisotropy [flow]anisotropic flow heavy-ion collisions system-size dependence
researchProduct

"Figure 2" of "Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central $d+$Au collisions at $\s…

2023

$c_2$ ($p_T$) for track lower-tower pairs from 0-5% $d$+Au collisions and $c_2$ ($p_T$) for pairs in minimum bias $p$+$p$ collisions times the dilution factor.

ppg161long-range angular correlation$p$ $p$ --> CHARGED Xazimuthal angular correlationsquadrupole anisotropy200.0$d$ Au --> CHARGED X
researchProduct