Search results for "lower bound"

showing 10 items of 269 documents

On the Performance of Channel Assembling and Fragmentation in Cognitive Radio Networks

2014

[EN] Flexible channel allocation may be applied to multi-channel cognitive radio networks (CRNs) through either channel assembling (CA) or channel fragmentation (CF). While CA allows one secondary user (SU) occupy multiple channels when primary users (PUs) are absent, CF provides finer granularity for channel occupancy by allocating a portion of one channel to an SU flow. In this paper, we investigate the impact of CF together with CA for SU flows by proposing a channel access strategy which activates both CF and CA and correspondingly evaluating its performance. In addition, we also consider a novel scenario where CA is enabled for PU flows. The performance evaluation is conducted based on…

Channel allocation schemesComputer sciencebusiness.industryApplied MathematicsFragmentation (computing)INGENIERIA TELEMATICATopologyUpper and lower boundsComputer Science ApplicationsContinuous time Markov chain modelingMulti-channel cognitive radio networksChannel assemblingCognitive radioFlow (mathematics)Channel fragmentationPerformance evaluationElectrical and Electronic EngineeringbusinessCommunication channelComputer networkIEEE Transactions on Wireless Communications
researchProduct

A True Extension of the Markov Inequality to Negative Random Variables

2020

The Markov inequality is a classical nice result in statistics that serves to demonstrate other important results as the Chebyshev inequality and the weak law of large numbers, and that has useful applications in the real world, when the random variable is unspecified, to know an upper bound for the probability that an variable differs from its expectation. However, the Markov inequality has one main flaw: its validity is limited to nonnegative random variables. In the very short note, we propose an extension of the Markov inequality to any non specified random variable. This result is completely new.

Chebyshev's inequalityLaw of large numbersComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMarkov's inequalityMathematicsofComputing_NUMERICALANALYSISApplied mathematicsExtension (predicate logic)Random variableUpper and lower boundsMathematicsVariable (mathematics)SSRN Electronic Journal
researchProduct

Upper Bound for the Approximation Error for the Kirchhoff-Love Arch Problem

2013

In this paper, a guaranteed and computable upper bound of approximation errors for the Kirchhoff-Love arch problem is derived. In general, it belongs to the class of functional a posteriori error estimates. The derivation method uses purely functional arguments and, therefore, the estimates are valid for any conforming approximation within the energy space. The computational implementation of the upper bound is discussed and demonstrated by a numerical example.

Class (set theory)Approximation errorA priori and a posterioriApplied mathematicsDerivation methodArchSpace (mathematics)Upper and lower boundsEnergy (signal processing)Mathematics
researchProduct

Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups

2020

We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.

Class (set theory)Pure mathematicsControl and OptimizationCarnot groups calibrations nonlocal perimeters/ Γ-convergence sets of finite perimeter rectifiabilityMathematics::Analysis of PDEssets of finite perimetervariaatiolaskentaComputer Science::Computational Geometry01 natural sciencesUpper and lower boundsdifferentiaaligeometriasymbols.namesakeMathematics - Analysis of PDEs510 MathematicsMathematics - Metric GeometryComputer Science::Logic in Computer ScienceConvergence (routing)FOS: MathematicsMathematics::Metric Geometry0101 mathematicscalibrationsMathematicsnonlocal perimeters010102 general mathematicsrectifiabilityryhmäteoriaMetric Geometry (math.MG)matemaattinen optimointi010101 applied mathematicsComputational MathematicsΓ-convergenceΓ-convergenceCarnot groupsControl and Systems EngineeringsymbolsCarnot cycleAnalysis of PDEs (math.AP)ESAIM: Control, Optimisation and Calculus of Variations
researchProduct

A lower bound for the Bloch radius of 𝐾-quasiregular mappings

2004

We give a quantitative proof to Eremenko’s theorem (2000), which extends Bloch’s classical theorem to the class of n n -dimensional K K -quasiregular mappings.

Class (set theory)Pure mathematicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESApplied MathematicsGeneral MathematicsMathematicsofComputing_GENERALGeometryRadiusClassical theoremGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Upper and lower boundsMathematicsProceedings of the American Mathematical Society
researchProduct

THE ZONE MODULUS OF A LINK

2005

In this paper, we construct a conformally invariant functional for two-component links called the zone modulus of the link. Its main property is to give a sufficient condition for a link to be split. The zone modulus is a positive number, and its lower bound is 1. To construct a link with modulus arbitrarily close to 1, it is sufficient to consider two small disjoint spheres each one far from the other and then to construct a link by taking a circle enclosed in each sphere. Such a link is a split link. The situation is different when the link is non-split: we will prove that the modulus of a non-split link is greater than [Formula: see text]. This value of the modulus is realized by a spec…

CombinatoricsAlgebra and Number TheoryCorollaryHopf linkSplit linkMathematical analysisModulusMöbius energyDisjoint setsInvariant (mathematics)Upper and lower boundsMathematicsJournal of Knot Theory and Its Ramifications
researchProduct

Explicit Upper Bound for Entropy Numbers

2004

We give an explicit upper bound for the entropy numbers of the embedding I : W r,p(Ql) → C(Ql) where Ql = (−l, l)m ⊂ Rm, r ∈ N, p ∈ (1,∞) and rp > m.

CombinatoricsApplied MathematicsMaximum entropy probability distributionEmbeddingEntropy (information theory)Min entropyUpper and lower boundsAnalysisEntropy rateQuantum relative entropyJoint quantum entropyMathematicsZeitschrift für Analysis und ihre Anwendungen
researchProduct

Blocking sets and partial spreads in finite projective spaces

1980

A t-blocking set in the finite projective space PG(d, q) with d≥t+1 is a set $$\mathfrak{B}$$ of points such that any (d−t)-dimensional subspace is incident with a point of $$\mathfrak{B}$$ and no t-dimensional subspace is contained in $$\mathfrak{B}$$ . It is shown that | $$\mathfrak{B}$$ |≥q t +...+1+q t−1√q and the examples of minimal cardinality are characterized. Using this result it is possible to prove upper and lower bounds for the cardinality of partial t-spreads in PG(d, q). Finally, examples of blocking sets and maximal partial spreads are given.

CombinatoricsDiscrete mathematicsCardinalityDifferential geometryHyperbolic geometryProjective spaceGeometry and TopologyAlgebraic geometryUpper and lower boundsSubspace topologyMathematicsProjective geometryGeometriae Dedicata
researchProduct

Quantum Query Complexity of Boolean Functions with Small On-Sets

2008

The main objective of this paper is to show that the quantum query complexity Q(f) of an N-bit Boolean function f is bounded by a function of a simple and natural parameter, i.e., M = |{x|f(x) = 1}| or the size of f's on-set. We prove that: (i) For $poly(N)\le M\le 2^{N^d}$ for some constant 0 < d < 1, the upper bound of Q(f) is $O(\sqrt{N\log M / \log N})$. This bound is tight, namely there is a Boolean function f such that $Q(f) = \Omega(\sqrt{N\log M / \log N})$. (ii) For the same range of M, the (also tight) lower bound of Q(f) is $\Omega(\sqrt{N})$. (iii) The average value of Q(f) is bounded from above and below by $Q(f) = O(\log M +\sqrt{N})$ and $Q(f) = \Omega (\log M/\log N+ \sqrt{N…

CombinatoricsDiscrete mathematicsComplexity indexKarp–Lipton theoremBounded functionCircuit minimization for Boolean functionsCircuit complexityUpper and lower boundsPlanarity testingBoolean conjunctive queryMathematics
researchProduct

Almost Tight Bound for the Union of Fat Tetrahedra in Three Dimensions

2007

For any AND-OR formula of size N, there exists a bounded-error N1/2+o(1)-time quantum algorithm, based on a discrete-time quantum walk, that evaluates this formula on a black-box input. Balanced, or "approximately balanced," formulas can be evaluated in O(radicN) queries, which is optimal. It follows that the (2-o(1))th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.

CombinatoricsDiscrete mathematicsComputational complexity theoryOpen problemExistential quantificationQuantum algorithmQuantum walkComputational geometryUpper and lower boundsQuantum computerMathematics48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)
researchProduct