Search results for "luokitus"

showing 10 items of 48 documents

Alaraajojen luun mineraalipitoisuuden ja polven nivelruston väliset yhteydet postmenopausaalisilla naisilla

2011

Tämän poikkileikkaustutkimuksen tarkoituksena oli selvittää luuston (reisiluun kaula, lanneranka L2-L4) mineraalitiheysarvojen ja polven nivelruston (reisiluu, sääriluu) eheyttä kuvaavien dGEMRIC-arvojen välistä yhteyttä postmenopausaalisilla naisilla. Tutkimukseen rekrytoitiin 82 naista (keskimääräiseltä iältään 57,7 vuotta, SD 4,2) lehti-ilmoituksen perusteella. Sisäänottokriteerinä oli rtg:llä arvioidun Kellgren-Lawrence-luokituksen (K/L) mukaan ensimmäisen (K/L1) tai toisen (K/L2) asteen lievä polven nivelrikko. Reisiluun kaulan ja lannerangan (L2–L4) BMC-arvot mitattiin DXA-laitteistolla. Tutkimushenkilöillä ei ollut osteoporoosia, jonka kynnysarvona käytettiin T-arvoa >2,5. Tibian ja …

DXAdGEMRICnivelrikkonaisetluustovaihdevuodetnivelsairaudetmagneettitutkimusKellgren-Lawrence -luokitus
researchProduct

Updating strategies for distance based classification model with recursive least squares

2022

Abstract. The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the possibilities of introducing new classes with Recursive Least Squares (RLS) updates for the pre-trained self learning-MLM model. The idea of experiment B is to simulate the push broom spectral imagers working principles, update and test the model based on a stream of pixel spectrum lines on a continuous scanning process. Experiment B aims to train the model with a significantly small amount of labelled reference points and update it continuously with (RLS) to reach ma…

luokitus (toiminta)Minimal Learning Machinemachine learningkoneoppiminenclassificationhyperspectral imagingkaukokartoitusRecursive Least Squaresreal-time computationhyperspektrikuvantaminen
researchProduct

Semantic place recognition for context aware services

2012

Extracting the meaning of the most significant places, which are frequently visited by a mobile user, is a relevant problem in mobile computing. Predicting semantic meaning of such places is useful in many areas. The problem of place semantic annotation of a user location can be challenging for service providers. Awareness of user activities is very important for development of personalized applications, which can be used in health care systems, living systems, etc. Predicting location of mobile users not only enables development of high quality location-based services and applications, but also improves resource reservation in wireless networks. In this research several solutions for seman…

classificationsemantic place predictionlocation-based servicespaikkatiedotmobile computingdata mininglangaton tekniikkasemantic locationtiedonlouhintaluokitus
researchProduct

RUG-III baserade ersättningssystem för äldrevården : en beskrivning av system i USA, Kanada, Schweiz, Island och Italien

2004

KanadaRUG-luokitusvanhuksetSveitsiYhdysvallatIslantiItaliahoitotyö
researchProduct

Testing a spectral-based feature set for audio genre classification

2011

Automatic musical genre classification is an important information retrieval task since it can be applied for practical purposes such as the organization of data collections in the digital music industry. However, this task remains an open question because the current state of the art shows far from satisfactory outcomes in terms of classification performance. Moreover, the most common algorithms that are used for this task are not designed for modelling music perception. This study suggests a framework for testing different musical features for use in music genre classification and evaluates the performance of this task based on two musical descriptors. The focus of this study is on automa…

mallintaminenComputingMethodologies_PATTERNRECOGNITIONpolyphonic timbremusic information retrievalmusiikkigenretsähköiset palvelutmusic genre classificationfeature rankingluokitus
researchProduct

Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation

2023

Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, detection, recognition, prediction, synthetic data generation, security, etc., on the basis of image data. In spite of being efficient for these objectives, the majority of current deep learning models lack interpretability and explainability. They can discover features hidden within input data together with their mutual co-occurrence. However, they are weak at discovering and making explicit hidden causalities between the features, which could be the reason behind the parti…

päättelyluokitus (toiminta)syväoppiminenConvolutional Neural Networkneuroverkotimage processingGenerative Adversarial NetworkkoneoppiminenkausaliteettiGeneral Earth and Planetary Sciencesvalmistustekniikkakonenäköcausal discoverycausal inferenceGeneral Environmental Science
researchProduct

Dangerous relationships : biases in freshwater bioassessment based on observed to expected ratios

2018

Copyright by the Ecological Society of America The ecological assessment of freshwaters is currently primarily based on biological communities and the reference condition approach (RCA). In the RCA, the communities in streams and lakes disturbed by humans are compared with communities in reference conditions with no or minimal anthropogenic influence. The currently favored rationale is using selected community metrics for which the expected values (E) for each site are typically estimated from environmental variables using a predictive model based on the reference data. The proportional differences between the observed values (O) and E are then derived, and the decision rules for status ass…

inland waters0106 biological sciencesPercentilepäätöksentekomodelling (creation related to information)010501 environmental sciencesExpected value01 natural sciencescase studylakesStatisticsviitearvotfreshwatersMathematicsevaluationEcologyEcologyBiodiversityVariance (accounting)reference valuessimulationpredictive modelsekologia6. Clean waterreference condition approachmathematical modelsEnvironmental Monitoringmallintaminenecological statusCorrection methodta1172järvetdecision makingtapaustutkimusRiversAnimalssimulointiekologinen tila0105 earth and related environmental sciencesta112bioassessmentluokitus (toiminta)010604 marine biology & hydrobiologyEcological assessmentDecision rulesisävedetInvertebratesReference data13. Climate actionta1181classification errormatemaattiset mallitarviointiQuantileEcological Applications
researchProduct

Dysfasiakuntoutuksen muutos kahden tapausselosteen valossa

1998

Rapinin ja Allenin dysfasialuokitusdysfasiakuntoutusdysfasia ja oppimisvaikeudetdysfasia/kielihäiriöt
researchProduct

Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

2022

Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromag…

luokitus (toiminta)koneoppiminenilmaisimetneutriinotneuroverkothiukkasfysiikka
researchProduct

Tilastollisia luokittelumenetelmiä koneelliseen tunnistamiseen : sovellus pohjaeläinaineistoon

2010

Pohjaeläimiä käytetään biologisessa seurannassa, jolla tutkitaan ihmistoiminnan vaikutuksia vesistöjen ympäristön tilaan. Perinteisesti pohjaeläimet tunnistetaan manuaalisesti. Tässä työssä tarkastellaan, miten pohjaeläimiä tunnistetaan koneellisesti käyttäen luokittelumenetelmiä, jotka ovat tuottaneet hyviä tuloksia planktoneilla. Pohjaeläinten tapauksessa on tärkeää saavuttaa mahdollisimman tarkat estimaatit lajien suhteellisille osuuksille. Tätä varten tarkastellaan sekaannusmatriisikorjauksena tunnettua menetelmää lajiosuuksien estimaateille. Pohjaeläimet ovat vesistöjen pohjassa eläviä selkärangattomia eläimiä, jotka reagoivat nopeasti ympäristön muutoksiin. Niiden runsaussuhteiden muu…

pohjaeläimistöBayes luokittelijabayesilainen menetelmätunnistaminenluokitus
researchProduct