Search results for "machine"
showing 10 items of 2592 documents
Comparative Analysis of Machine Learning Methods to Predict Growth of F. sporotrichioides and Production of T-2 and HT-2 Toxins in Treatments with Et…
2021
The efficacy of ethylene-vinyl alcohol copolymer films (EVOH) incorporating the essential oil components cinnamaldehyde (CINHO), citral (CIT), isoeugenol (IEG), or linalool (LIN) to control growth rate (GR) and production of T-2 and HT-2 toxins by Fusarium sporotrichioides cultured on oat grains under different temperature (28, 20, and 15 °C) and water activity (aw) (0.99 and 0.96) regimes was assayed. GR in controls/treatments usually increased with increasing temperature, regardless of aw, but no significant differences concerning aw were found. Toxin production decreased with increasing temperature. The effectiveness of films to control fungal GR and toxin production was as follows: EVOH…
Predictive distributions that mimic frequencies over a restricted subdomain
2020
A predictive distribution over a sequence of $$N+1$$ events is said to be “frequency mimicking” whenever the probability for the final event conditioned on the outcome of the first N events equals the relative frequency of successes among them. Exchangeable distributions that exhibit this feature universally are known to have several annoying concomitant properties. We motivate frequency mimicking assertions over a limited subdomain in practical problems of finite inference, and we identify their computable coherent implications. We provide some examples using reference distributions, and we introduce computational software to generate any complete specification desired. Theorems on reducti…
Machine learning of microbial interactions using abductive ILP and hypothesis frequency/compression estimation
2021
Interaction between species in microbial communities plays an important role in the functioning of all ecosystems, from cropland soils to human gut microbiota. Many statistical approaches have been proposed to infer these interactions from microbial abundance information. However, these statistical approaches have no general mechanisms for incorporating existing ecological knowledge in the inference process. We propose an Abductive/Inductive Logic Programming (A/ILP) framework to infer microbial interactions from microbial abundance data, by including logical descriptions of different types of interaction as background knowledge in the learning. This framework also includes a new mechanism …
Apprentissage automatique de réseaux d'interaction à partir de données de séquences de nouvelle génération
2022
Climate change and other human-induced processes are modifying ecosystems, globally, at an ever increasing rate. Microbial communities play an important role in the functioning ecosystems, maintaining their diversity and services. These communities are shaped by the different abiotic environmental effects to which they are subjected and the biotic interactions between all community members. The ANR Next-Generation Biomonitoring (NGB) project proposed to reconstruct interaction networks from abundance measures obtained sequencing environmental DNA (eDNA) and to use these networks to monitor ecosystem change. In this thesis, conducted as part of the NGB project, I evaluate the potential of tw…
Lung on a Chip Development from Off-Stoichiometry Thiol–Ene Polymer
2021
Institute of Solid-State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2. Finally, we would like to thank Biol. Kaspars Tars from Latvian Biomedical research and study center for giving us the opportunity to participate in this consortium and contribute to Latvian scientists’ effort in response to the COVID-19 pandemic.
Mapping landscape canopy nitrogen content from space using PRISMA data
2021
Abstract Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and upcoming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, hyperspectral missions open enhanced …
Active learning strategies for the deduplication of electronic patient data using classification trees.
2012
Graphical abstractDisplay Omitted Highlights? Active learning for medical record linkage is used on a large data set. ? We compare a simple active learning strategy with a more sophisticated variant. ? The active learning method of Sarawagi and Bhamidipaty (2002) 6] is extended. ? We deliver insights into the variations of the results due to random sampling in the active learning strategies. IntroductionSupervised record linkage methods often require a clerical review to gain informative training data. Active learning means to actively prompt the user to label data with special characteristics in order to minimise the review costs. We conducted an empirical evaluation to investigate whether…
Active Learning for Monitoring Network Optimization
2012
Kernel-based active learning strategies were studied for the optimization of environmental monitoring networks. This chapter introduces the basic machine learning algorithms originated in the statistical learning theory of Vapnik (1998). Active learning is closer to an optimization done using sequential Gaussian simulations. The chapter presents the general ideas of statistical learning from data. It derives the basics of kernel-based support vector algorithms. The active learning framework is presented and machine learning extensions for active learning are described in the chapter. Kernel-based active learning strategies are tested on real case studies. The chapter explores the use of a c…
Remote sensing image segmentation by active queries
2012
Active learning deals with developing methods that select examples that may express data characteristics in a compact way. For remote sensing image segmentation, the selected samples are the most informative pixels in the image so that classifiers trained with reduced active datasets become faster and more robust. Strategies for intelligent sampling have been proposed with model-based heuristics aiming at the search of the most informative pixels to optimize model's performance. Unlike standard methods that concentrate on model optimization, here we propose a method inspired in the cluster assumption that holds in most of the remote sensing data. Starting from a complete hierarchical descri…
Discovering single classes in remote sensing images with active learning
2012
When dealing with supervised target detection, the acquisition of labeled samples is one of the most critical phases: the samples must be yet representative of the class of interest, but must also be found among a vast majority of non-target examples. Moreover, the efficiency of the search is also an issue, since the samples labeled as background are not used by target detectors such as the support vector data description (SVDD). In this work we propose a competitive and effective approach to identify the most relevant training samples for one-class classification based on the use of an active learning strategy. The SVDD classifier is first trained with insufficient target examples. It is t…