Search results for "magnetic dipole moment"

showing 10 items of 117 documents

Pseudoscalar transition form factors: (g − 2) of the muon, pseudoscalar decays into lepton pairs, and the η – η′ mixing

2015

We present our model-independent and data-driven method to describe pseudoscalar meson transition form factors in the space- and (low-energy) time-like regions. The method is general and conforms a toolkit applicable to any other form factor, of one and two variables, with the potential to include both high- and low-energy QCD constraints altogether. The method makes use of analyticity and unitary properties of form factors, it is simple, systematic and can be improved upon by including new data. In the present discussion, the method is used to show the impact of experimental data for precision calculations in the low-energy sector of the Standard Model. In particular, due to its relevance …

PhysicsQuantum chromodynamicsParticle physicsMuonNuclear TheoryAnomalous magnetic dipole moment010308 nuclear & particles physicsPhysics beyond the Standard ModelPhysicsQC1-999High Energy Physics::PhenomenologyForm factor (quantum field theory)01 natural sciencesPseudoscalar mesonHigh Energy Physics - ExperimentPseudoscalarHigh Energy Physics - Phenomenology0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsLeptonEPJ Web of Conferences
researchProduct

Magnetic moment of the Roper resonance

2012

The magnetic moment of the Roper resonance is calculated in the framework of a low-energy effective field theory of the strong interactions. A systematic power-counting procedure is implemented by applying the complex-mass scheme.

PhysicsRoper resonanceNuclear and High Energy PhysicsMagnetic momentNeutron magnetic momentProton magnetic momentFOS: Physical sciencesElectron magnetic dipole momentResonance (particle physics)Spin magnetic momentHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicsMagnetic dipole
researchProduct

The magnetic moment anomaly of the electron bound in hydrogen-like oxygen16O7 

2003

The measurement of the g-factor of the electron bound in a hydrogen-like ion is a high-accuracy test of the theory of quantum electrodynamics (QED) in strong fields. Here we report on the measurement of the g-factor of the bound electron in hydrogen-like oxygen (16O7+). In our experiment a single highly charged ion is stored in a Penning trap. The electronic spin state of the ion is monitored via the continuous Stern?Gerlach effect in a quantum non-demolition measurement. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g-factor of the bound electron is obtained by varying the micro…

PhysicsSpin statesSpin polarizationElectronAtomic physicsZero field splittingCondensed Matter PhysicsSpin (physics)Spin quantum numberElectron magnetic dipole momentAtomic and Molecular Physics and OpticsSpin magnetic momentJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

The leading disconnected contribution to the anomalous magnetic moment of the muon

2014

The hadronic vacuum polarization can be determined from the vector correlator in a mixed time-momentum representation. We explicitly calculate the disconnected contribution to the vector correlator, both in the $N_f = 2$ theory and with an additional quenched strange quark, using non-perturbatively $O(a)$-improved Wilson fermions. All-to-all propagators are computed using stochastic sources and a generalized hopping parameter expansion. Combining the result with the dominant connected contribution, we are able to estimate an upper bound for the systematic error that arises from neglecting the disconnected contribution in the determination of $(g-2)_\mu$.

PhysicsStrange quarkMuonAnomalous magnetic dipole momentHigh Energy Physics::LatticeHadronHigh Energy Physics - Lattice (hep-lat)PropagatorFOS: Physical sciencesFermionUpper and lower boundsHigh Energy Physics - LatticeQuantum electrodynamicsVacuum polarization
researchProduct

Updated pseudoscalar contributions to the hadronic light-by-light of the muon (g-2)

2016

In this work, we present our recent results on a new and alternative data-driven determination for the hadronic light-by-light pseudoscalar-pole contribution to the muon $(g-2)$. Our approach is based on Canterbury approximants, a rational approach to describe the required transition form factors, which provides a systematic and model-independent framework beyond traditional large-$N_c$ approaches. As a result, we obtain a competitive determination with errors according to future $(g-2)$ experiments including, for the first time, a well-defined systematic uncertainty.

PhysicsSystematic errorNuclear and High Energy PhysicsWork (thermodynamics)Particle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsPhysics beyond the Standard ModelHadronGeneral Physics and AstronomyFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesPseudoscalarHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPadé approximant010306 general physics
researchProduct

Hadronic light-by-light scattering amplitudes from lattice QCD versus dispersive sum rules

2017

The hadronic contribution to the eight forward amplitudes of light-by-light scattering ($\gamma^*\gamma^*\to \gamma^*\gamma^*$) is computed in lattice QCD. Via dispersive sum rules, the amplitudes are compared to a model of the $\gamma^*\gamma^*\to {\rm hadrons}$ cross sections in which the fusion process is described by hadronic resonances. Our results thus provide an important test for the model estimates of hadronic light-by-light scattering in the anomalous magnetic moment of the muon, $a_\mu^{\rm HLbL}$. Using simple parametrizations of the resonance $M\to \gamma^*\gamma^*$ transition form factors, we determine the corresponding monopole and dipole masses by performing a global fit to …

Quantum chromodynamicsPhysicsParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)HadronFOS: Physical sciencesLattice QCD01 natural sciences530High Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)PionLattice (order)0103 physical sciencesddc:530High Energy Physics::Experiment010306 general physics
researchProduct

Hadronic light-by-light scattering in the anomalous magnetic moment of the muon

2018

15th International Workshop on Tau Lepton Physics, Amsterdam, The Netherlands, 24 Sep 2018 - 28 Sep 2018; SciPost physics 1, 031 (2019). doi:10.21468/SciPostPhysProc.1.031

Quantum chromodynamicsPhysicsParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringPhysics beyond the Standard ModelPhysicsQC1-999High Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Lattice field theoryFOS: Physical sciencesLattice QCD01 natural sciences530Light scatteringHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesddc:530High Energy Physics::Experiment010306 general physics
researchProduct

Hadronic Contributions to the Anomalous Magnetic Moment of the Muon from Lattice QCD

2021

The Standard Model of Particle Physics describes three of the four known fundamental interactions: the strong interaction between quarks and gluons, the electromagnetic interaction, and the weak interaction. While the Standard Model is extremely successful, we know that it is not a complete description of nature. One way to search for physics beyond the Standard Model lies in the measurement of precision observables. The anomalous magnetic moment of the muon \(a_\mu \equiv \frac{1}{2}(g-2)_\mu \), quantifying the deviation of the gyromagnetic ratio from the exact value of 2 predicted by the Dirac equation, is one such precision observable. It exhibits a persistent discrepancy of 3.5 standar…

Quantum chromodynamicsPhysicsParticle physicsMuonAnomalous magnetic dipole momentPhysics beyond the Standard ModelStrong interactionLattice (group)Lattice QCDWeak interaction
researchProduct

Lattice calculations of the leading hadronic contribution to g-2

2012

We report on our ongoing project to calculate the leading hadronic contribution to the anomalous magnetic moment of the muon aHLO μ using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. In this study, we changed the vacuum polarisation tensor to a combination of local and point-split currents which significantly reduces the numerical effort. Partially twisted boundary conditions allow us to improve the momentum resolution of the vacuum polarisation tensor and therefore the determination of the leading hadronic contribution to (g− 2)μ . We also extended the range of ensembles to include a pion mass below 200MeV which allows us to check the non-trivial chiral behav…

Quantum chromodynamicsPhysicsParticle physicsPionMuonAnomalous magnetic dipole momentHigh Energy Physics::LatticeHadronLattice field theoryFermionLattice QCDProceedings of The 30th International Symposium on Lattice Field Theory — PoS(Lattice 2012)
researchProduct

Bottomonium precision tests from full lattice QCD: Hyperfine splitting, ϒ leptonic width, and b quark contribution to e+e−→hadrons

2021

We calculate the mass difference between the $\mathrm{\ensuremath{\Upsilon}}$ and ${\ensuremath{\eta}}_{b}$ and the $\mathrm{\ensuremath{\Upsilon}}$ leptonic width from lattice QCD using the highly improved staggered quark formalism for the $b$ quark and including $u$, $d$, $s$ and $c$ quarks in the sea. We have results for lattices with lattice spacing as low as 0.03 fm and multiple heavy quark masses, enabling us to map out the heavy quark mass dependence and determine values at the $b$ quark mass. Our results are ${M}_{\mathrm{\ensuremath{\Upsilon}}}\ensuremath{-}{M}_{{\ensuremath{\eta}}_{b}}=57.5(2.3)(1.0)\text{ }\text{ }\mathrm{MeV}$ (where the second uncertainty comes from neglect of …

Quantum chromodynamicsPhysicsQuarkParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHadronLattice QCDCorrelation function (quantum field theory)01 natural sciencesBottom quark0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhysical Review D
researchProduct