Search results for "magnon"
showing 6 items of 66 documents
Thermalization of hot electrons via interfacial electron-magnon interaction
2019
Recent work on layered structures of superconductors (S) or normal metals (N) in contact with ferromagnetic insulators (FI) has shown how the properties of the previous can be strongly affected by the magnetic proximity effect due to the static FI magnetization. Here we show that such structures can also exhibit a new electron thermalization mechanism due to the coupling of electrons with the dynamic magnetization, i.e., magnons in FI. We here study the heat flow between the two systems and find that in thin films the heat conductance due to the interfacial electron-magnon collisions can dominate over the well-known electron-phonon coupling below a certain characteristic temperature that ca…
Magnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers
2020
In this work, magnetization dynamics is studied in superconductor/ferromagnet/superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that in presence of both superconducting layers and of superconducting proximity at both superconductor/ferromagnet interfaces a massive shift of the ferromagnetic resonance to higher frequencies emerges. The phenomenon is robust and essentially long-range: it has been observed for a set of samples with the thickness of ferromagnetic layer in the range from tens up to hundreds of nanometers. The resonance frequency shift is characterized by proximity-…
Spin Wave Emission from Vortex Cores under Static Magnetic Bias Fields
2021
We studied the influence of a static in-plane magnetic field on the alternating-field-driven emission of nanoscale spin waves from magnetic vortex cores. Time-resolved scanning transmission X-ray microscopy was used to image spin waves in disk structures of synthetic ferrimagnets and single ferromagnetic layers. For both systems, it was found that an increasing magnetic bias field continuously displaces the wave-emitting vortex core from the center of the disk toward its edge without noticeably altering the spin-wave dispersion relation. In the case of the single-layer disk, an anisotropic lateral expansion of the core occurs at higher magnetic fields, which leads to a directional rather th…
Visualization of Moiré Magnons in Monolayer Ferromagnet
2023
| openaire: EC/H2020/788185/EU//E-DESIGN Two-dimensional magnetic materials provide an ideal platform to explore collective many-body excitations associated with spin fluctuations. In particular, it should be feasible to explore, manipulate, and ultimately design magnonic excitations in two-dimensional van der Waals magnets in a controllable way. Here we demonstrate the emergence of moiré magnon excitations, stemming from the interplay of spin-excitations in monolayer CrBr3 and the moiré pattern arising from the lattice mismatch with the underlying substrate. The existence of moiré magnons is further confirmed via inelastic quasiparticle interference, showing the appearance of a dispersion …
Ultrafast Coherent THz Lattice Dynamics Coupled to Spins in the van der Waals Antiferromagnet FePS3
2022
Coherent THz optical lattice and hybridized phonon–magnon modes are triggered by femtosecond laser pulses in the antiferromagnetic van der Waals semiconductor FePS3. The laser-driven lattice and spin dynamics are investigated in a bulk crystal as well as in a 380 nm-thick exfoliated flake as a function of the excitation photon energy, sample temperature and applied magnetic field. The pump-probe magneto-optical measurements reveal that the amplitude of a coherent phonon mode oscillating at 3.2 THz decreases as the sample is heated up to the Néel temperature. This signal eventually vanishes as the phase transition to the paramagnetic phase occurs, thus revealing its connection to the long-ra…
One‐magnon Raman scattering in Ni c Mg 1–c O solid solutions
2005
The one-magnon Raman scattering was studied for the first time in antiferromagnetic NicMg1–cO solid solutions as a function of temperature and composition. We found that (i) the one-magnon frequency extrapolated to T = 0 K experiences an abrupt change between c = 0.99 and c = 0.9 and (ii) the one-magnon energy for highly diluted nickel oxide vanishes significantly below the Neel temperature. The obtained dependences are compared to the theoretical predictions within the mean field approximation. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)