Search results for "manifold"
showing 10 items of 415 documents
Unit Vector Fields that are Critical Points of the Volume and of the Energy: Characterization and Examples
2007
In the last few years, many works have appeared containing examples and general results on harmonicity and minimality of vector fields in different geometrical situations. This survey will be devoted to describe many of the known examples, as well as the general results from where they are obtained.
The Problem of the Transfer of the Results of Research and Innovations into the Sector Of Energy Conservation
1984
The manifold and different “barriers” that must be overcome to let the innovations deriving from research become widely known by users and operators alike, are being made the object of consideration all over the industrialized world and by the European Community itself.
FE Calculation Methodology for the Thermodynamic Fatigue Analysis of an Engine Component
2006
Thermo mechanical fatigue problem is treated to define an analysis methodology permitting the strength evaluation by reliability viewpoint. The main difficulty is the lack of both theoretical and experimental information; consequently the problem is treated verifying continually the validity and the limits of the developing solution method. The main task of the activity described in this paper was the development of a numerical methodology, based on FE analyses, for the evaluation of the structural behavior of engine components subjected to thermo mechanical fatigue phenomena. The chosen application was the exhaust manifold of an IC engine; FE analyses were executed following the standard m…
Partial stability for specific growth rate control biotechnological fed-batch processes
2004
In this paper, the problem of the specific growth rate control in biological reactions in fed-batch mode is dealt with. It is assumed that only part of the state is measurable on-line, namely biomass and volume. Moreover, no estimation of the specific growth rate is used. An unbounded manifold is tracked using a partial state feedback. Then, techniques for partial stability, i.e., only with respect to part of the variables, are used in order to analyze the problem.
PRINCIPAL POLYNOMIAL ANALYSIS
2014
© 2014 World Scientific Publishing Company. This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of maximal variance by means of curves instead of straight lines. Contrarily to previous approaches PPA reduces to performing simple univariate regressions which makes it computationally feasible and robust. Moreover PPA shows a number of interesting analytical properties. First PPA is a volume preserving map which in turn guarantees the existence of the inverse. Second such an inverse can be obtained…
Critical points of higher order for the normal map of immersions in Rd
2012
We study the critical points of the normal map v : NM -> Rk+n, where M is an immersed k-dimensional submanifold of Rk+n, NM is the normal bundle of M and v(m, u) = m + u if u is an element of NmM. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R-3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we a…
Lie algebra on the transverse bundle of a decreasing family of foliations
2010
Abstract J. Lehmann-Lejeune in [J. Lehmann-Lejeune, Cohomologies sur le fibre transverse a un feuilletage, C.R.A.S. Paris 295 (1982), 495–498] defined on the transverse bundle V to a foliation on a manifold M, a zero-deformable structure J such that J 2 = 0 and for every pair of vector fields X , Y on M: [ J X , J Y ] − J [ J X , Y ] − J [ X , J Y ] + J 2 [ X , Y ] = 0 . For every open set Ω of V, J. Lehmann-Lejeune studied the Lie Algebra L J ( Ω ) of vector fields X defined on Ω such that the Lie derivative L ( X ) J is equal to zero i.e., for each vector field Y on Ω : [ X , J Y ] = J [ X , Y ] and showed that for every vector field X on Ω such that X ∈ K e r J , we can write X = ∑ [ Y ,…
Real quadrics in C n , complex manifolds and convex polytopes
2006
In this paper, we investigate the topology of a class of non-Kähler compact complex manifolds generalizing that of Hopf and Calabi-Eckmann manifolds. These manifolds are diffeomorphic to special systems of real quadrics Cn which are invariant with respect to the natural action of the real torus (S1)n onto Cn. The quotient space is a simple convex polytope. The problem reduces thus to the study of the topology of certain real algebraic sets and can be handled using combinatorial results on convex polytopes. We prove that the homology groups of these compact complex manifolds can have arbitrary amount of torsion so that their topology is extremely rich. We also resolve an associated wall-cros…
Geometry and quasisymmetric parametrization of Semmes spaces
2014
We consider decomposition spaces R/G that are manifold factors and admit defining sequences consisting of cubes-with-handles. Metrics on R/G constructed via modular embeddings of R/G into Euclidean spaces promote the controlled topology to a controlled geometry. The quasisymmetric parametrizability of the metric space R/G×R by R for any m ≥ 0 imposes quantitative topological constraints, in terms of the circulation and the growth of the cubes-with-handles, to the defining sequences for R/G. We give a necessary condition and a sufficient condition for the existence of parametrization. The necessary condition answers negatively a question of Heinonen and Semmes on quasisymmetric parametrizabi…