Search results for "martian"

showing 10 items of 26 documents

Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

2011

Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclasti…

MartianAtmospheric ScienceEcologyWater on MarsOutcropEarth scienceGeochemistryPaleontologySoil ScienceForestryEvidence of water on Mars from Mars OdysseyMars Exploration ProgramAquatic ScienceOceanographyGeologic recordGeologic mapGeophysicsSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Period (geology)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research
researchProduct

Identification of Morphological Biosignatures in Martian Analogue Field Specimens Using In Situ Planetary Instrumentation

2008

International audience; We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics ( sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life ( fossilized microbial filaments) and of extant life (crypto-chasmoendolit…

Meridiani PlanumIn situGeologic Sediments010504 meteorology & atmospheric sciencesMOSSBAUER-SPECTROSCOPYInstrumentationOrigin of LifeAntarctic RegionsMarsGUSEV CRATERExploration of MarsCalcium Sulfate01 natural sciencesCRYPTOENDOLITHIC LICHENSCalcium CarbonateAstrobiologyRAMAN-SPECTROSCOPIC DETECTIONGermanyExobiology0103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesRemote sensingMartianMineralsPlanetary surfaceSpectrometerMERIDIANI-PLANUMWESTERN-AUSTRALIAMars Exploration ProgramAgricultural and Biological Sciences (miscellaneous)YELLOWSTONE-NATIONAL-PARK13. Climate actionSpace and Planetary ScienceMARS EXPLORATIONAmericasANTARCTIC HABITATSIron CompoundsGeologyHAUGHTON IMPACT STRUCTUREAstrobiology
researchProduct

Athena Mars rover science investigation

2003

[1] Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini-TES). Pancam provides high-resolution, color, stereo imaging, while Mini-TES provides spectral cubes at mid-inf…

MartianScientific instrumentMeridiani PlanumAtmospheric ScienceThermal Emission SpectrometerEcologySpectrometerPaleontologySoil ScienceForestryAquatic ScienceOceanographyMars roverGeophysicsStereo imagingSpace and Planetary ScienceGeochemistry and PetrologyMartian surfaceEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyRemote sensingJournal of Geophysical Research: Planets
researchProduct

Secondary minerals from salt caves in the Atacama Desert (Chile): a hyperarid and hypersaline environment with potential analogies to the Martian sub…

2017

Over the past 15 years several expeditions by French, American and especially Italian cavers have unveiled over 50 caves in the Cordillera de la Sal (Atacama Desert, Northern Chile). Many of these caves contain a variety of speleothems and minerals, some of which have rarely been observed within karst systems. Most of the secondary deposits in these caves are composed of halite, but also other halide, carbonate, sulphate, nitrate, phosphate, and silicate minerals have been found. Among the sixteen cave mineral species recognized, atacamite, darapskite, blödite, leonite, anhydrite, and especially antarcticite are worth mentioning. In one of the samples an unknown Ca-Sr-bearing chloride miner…

010504 meteorology & atmospheric sciencesQH301-705.5Settore GEO/04 - Geografia Fisica E GeomorfologiaEarth scienceSalt (chemistry)martian010502 geochemistry & geophysics01 natural sciencesAstrobiologyatacamaCaveminerogenesisMinerogenesiBiology (General)Hyperaridity0105 earth and related environmental sciencesEarth-Surface Processescave mineralschemistry.chemical_classificationMartianQE1-996.5Settore GEO/06 - Mineralogiageographygeography.geographical_feature_categoryDesert (philosophy)Mars analoguesMars analogueCave mineralGeologysalt cavescave minerals atacama martianchemistrySalt cavecave minerals salt caves hyperaridity minerogenesis Mars analoguesGeologyInternational Journal of Speleology
researchProduct

Disambiguating the soils of Mars

2020

Abstract Anticipated human missions to Mars require a methodical understanding of the unconsolidated bulk sediment that mantles its surface, given its role as an accessible resource for water and as a probable substrate for food production. However, classifying martian sediment as soil has been pursued in an ad hoc fashion, despite emerging evidence from in situ missions for current and paleo-pedological processes. Here we find that in situ sediment at Gusev, Meridiani and Gale are consistent with pedogenesis related to comminuted basalts mixing with older phyllosilicates – perhaps of pluvial origin – and sulfates. Furthermore, a notable presence of hydrated amorphous phases indicates signi…

010504 meteorology & atmospheric sciencesSettore GEO/04 - Geografia Fisica E GeomorfologiaEarth scienceWeatheringMartian soilRegolith01 natural sciences0103 physical sciencesWorld Reference Base for Soil ResourcesCryosol010303 astronomy & astrophysics0105 earth and related environmental sciencesUSDA soil taxonomyMartianSoil TaxonomyGelisolAstronomy and AstrophysicsSoil classificationMineral weatheringPedogenesisSettore AGR/14 - PedologiaSpace and Planetary ScienceSoil waterEnvironmental scienceWRBSettore M-GGR/01 - GeografiaPlanetary and Space Science
researchProduct

Sulfate deposition in subsurface regolith in Gusev crater, Mars

2006

Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rover's exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and miner…

Atmospheric ScienceGeochemistrySoil ScienceMineralogyAquatic Scienceengineering.materialOceanographychemistry.chemical_compoundImpact craterKieseriteGeochemistry and PetrologyMartian surfaceEarth and Planetary Sciences (miscellaneous)SulfateEjectaEarth-Surface ProcessesWater Science and TechnologyMartianEcologyPaleontologyForestryRegolithGeophysicschemistrySpace and Planetary ScienceengineeringSulfate mineralsGeologyJournal of Geophysical Research: Planets
researchProduct

Extracting science from Mössbauer spectroscopy on Mars

2003

[1] Deployment by the Mars Exploration Rovers of backscatter Mossbauer spectrometers offers an incredible opportunity to (1) elucidate the iron mineralogies of rocks, soils, and atmospheric dust and (2) gain insight into the physical event by which the mineralogy came into existence and consequently acquire information having potential for yielding ancient planetary history relevant to broad issues including the question of life. Determining the mineralogy is done by subjecting raw data to reduction algorithms and generating products known as Mossbauer parameters, which are highly characteristic. Mixed mineralogies are treated through deconvolution. Through being able to exploit Mossbauer m…

MartianAtmospheric ScienceEcologyBackscatterSpectrometerPaleontologySoil ScienceMineralogyForestryWeatheringMars Exploration ProgramAquatic ScienceOceanographyExploration of MarsSpectral lineAstrobiologyGeophysicsSpace and Planetary ScienceGeochemistry and PetrologyMössbauer spectroscopyEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research: Planets
researchProduct

Mauna Kea, Hawaii, as an Analog Site for Future Planetary Resource Exploration: Results from the 2010 ILSO-ISRU Field-Testing Campaign

2013

Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test cam…

BasaltScientific instrumentgeographygeography.geographical_feature_categoryMechanical EngineeringAerospace EngineeringDrillingIn situ resource utilizationGas analyzerSpace explorationVolcanoMartian surfaceEnvironmental scienceGeneral Materials ScienceCivil and Structural EngineeringRemote sensingJournal of Aerospace Engineering
researchProduct

Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven

2008

[1] A total of 3140 individual particles were examined in 31 soils along Spirit's traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a un…

Atmospheric SciencePopulationGeochemistrySoil ScienceMineralogyAquatic ScienceOceanographyTexture (geology)Impact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)SedimentologyPebbleeducationEarth-Surface ProcessesWater Science and TechnologyMartiangeographyeducation.field_of_studygeography.geographical_feature_categoryEcologyPaleontologyForestryGeophysicsVolcanoSpace and Planetary ScienceAeolian processesGeologyJournal of Geophysical Research
researchProduct

Report of the COSPAR Mars special regions colloquium

2010

International audience; In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > -25 degrees C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conser…

Atmospheric Science010504 meteorology & atmospheric sciencesPlanetary protectionLiquid waterAerospace EngineeringTerrainBACTERIAL-ACTIVITY01 natural sciencesSPACECRAFT SURFACESAstrobiologyWater-vaporSouth-pole snow0103 physical sciencesBacterial activitySpace research010303 astronomy & astrophysicsBacterial activity0105 earth and related environmental sciencesMartianCommittee on Space ResearchCOSPAR mars special regions colloquiumNear-surfaceAstronomy and AstrophysicsMars Exploration Program15. Life on landGround ice[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph]GeophysicsLiquid water13. Climate actionSpace and Planetary ScienceGeneral Earth and Planetary SciencesHigh obliquitySea-iceUpper martian surfaceSpace-craft surfacesGeology
researchProduct