Search results for "matematica"
showing 10 items of 1637 documents
Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces
2021
We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space (Y,d,μ)(Y,d,μ) is infinitesimally Hilbertian, i.e. the Sobolev space W1,2(Y,d,μ)W1,2(Y,d,μ) is a Hilbert space. The result is obtained by constructing an isometric embedding of the ‘abstract and analytical’ space of derivations into the ‘concrete and geometrical’ bundle whose fibre at x∈Yx∈Y is the tangent cone at x of YY. The conclusion then follows from the fact that for every x∈Yx∈Y such a cone is a CAT(0)CAT(0) space and, as such, has a Hilbert-like structure. peerReviewed
Auxiliary seminorms and the structure of a CQ*-algebra
2005
After reviewing the main facts of the theory of CQ*-algebras, we give some new results on the structure of proper CQ*-algebras using some seminorms defined by certain families of positive sesquilinear forms.
Well-posedness and singularity formation for the Camassa-Holm equation
2006
We prove the well-posedness of Camassa--Holm equation in analytic function spaces both locally and globally in time, and we investigate numerically the phenomenon of singularity formation for particular initial data.
The mixed capacitated general routing problem with turn penalties
2011
In this paper we deal with the mixed capacitated general routing problem with turn penalties. This problem generalizes many important arc and node routing problems, and it takes into account turn penalties and forbidden turns, which are crucial in many real-life applications, such as mail delivery, waste collection and street maintenance operations. Through a polynomial transformation of the considered problem into a Generalized Vehicle routing problem, we suggest a new approach for solving this new problem by transforming it into an Asymmetric Capacitated Vehicle routing problem. In this way, we can solve the new problem both optimally and heuristically using existing algorithms. A powerfu…
A model of capillary phenomena in RN with subcritical growth
2020
This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.
Resonances in the solar system
2010
We give a description of orbital and spin-orbit resonances in the solar system, providing several examples which include planets, satel- lites, asteroids, rings, Kuiper objects.
(H, ρ)-induced dynamics and the quantum game of life
2017
Abstract We propose an extended version of quantum dynamics for a certain system S , whose evolution is ruled by a Hamiltonian H, its initial conditions, and a suitable set ρ of rules, acting repeatedly on S . The resulting dynamics is not necessarily periodic or quasi-periodic, as one could imagine for conservative systems with a finite number of degrees of freedom. In fact, it may have quite different behaviors depending on the explicit forms of H, ρ as well as on the initial conditions. After a general discussion on this (H, ρ)-induced dynamics, we apply our general ideas to extend the classical game of life, and we analyze several aspects of this extension.
Generalized centro-invertible matrices with applications
2014
Centro-invertible matrices are introduced by R.S. Wikramaratna in 2008. For an involutory matrix R, we define the generalized centro-invertible matrices with respect to R to be those matrices A such that RAR = A^−1. We apply these matrices to a problem in modular arithmetic. Specifically, algorithms for image blurring/deblurring are designed by means of generalized centro-invertible matrices. In addition, if R1 and R2 are n × n involutory matrices, then there is a simple bijection between the set of all centro-invertible matrices with respect to R1 and the set with respect to R2.
A class of generalised finite T-groups
2011
Let F be a formation (of finite groups) containing all nilpotent groups such that any normal subgroup of any T-group in F and any subgroup of any soluble T-group in F belongs to F. A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M) belongs to F. Named after Kegel, a subgroup U of a finite group G is called a K- F-subnormal subgroup of G if either U=G or U=U0?U1???Un=G such that Ui?1 is either normal in Ui or Ui1 is F-normal in Ui, for i=1,2,...,n. We call a finite group G a TF-group if every K- F-subnormal subgroup of G is normal in G. When F is the class of all finite nilpotent groups, the TF-groups are precisely the T-groups. The aim of this paper is to analyse the…
Some new fixed point results in non-Archimedean fuzzy metric spaces
2013
In this paper, we introduce the notions of fuzzy $(\alpha,\beta,\varphi)$-contractive mapping, fuzzy $\alpha$-$\phi$-$\psi$-contractive mapping and fuzzy $\alpha$-$\beta$-contractive mapping and establish some results of fixed point for this class of mappings in the setting of non-Archimedean fuzzy metric spaces. The results presented in this paper generalize and extend some recent results in fuzzy metric spaces. Also, some examples are given to support the usability of our results.