Search results for "matematica"
showing 10 items of 1637 documents
On the weight distribution of perfect binary codes
2021
In this paper, we give a new proof of the closed-form formula for the weight distribution of a perfect binary single-error-correcting code.
Some integral type fixed point theorems in Non-Archimedean Menger PM-Spaces with common property (E.A) and application of functional equations in dyn…
2013
In this paper, we prove some integral type common fixed point theorems for weakly compatible mappings in Non-Archimedean Menger PM-spaces employing common property (E.A). Some examples are furnished which demonstrate the validity of our results. We extend our main result to four finite families of self-mappings employing the notion of pairwise commuting. Moreover, we give an application which supports the usability of our main theorem.
Absolutely continuous functions with values in a Banach space
2017
Abstract Let Ω be an open subset of R n , n > 1 , and let X be a Banach space. We prove that α-absolutely continuous functions f : Ω → X are continuous and differentiable (in some sense) almost everywhere in Ω.
Some fixed point theorems for generalized contractive mappings in complete metric spaces
2015
We introduce new concepts of generalized contractive and generalized alpha-Suzuki type contractive mappings. Then, we obtain sufficient conditions for the existence of a fixed point of these classes of mappings on complete metric spaces and b-complete b-metric spaces. Our results extend the theorems of Ciric, Chatterjea, Kannan and Reich.
A note on best approximation in 0-complete partial metric spaces
2014
We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.
Common Fixed Points in a Partially Ordered Partial Metric Space
2013
In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.
On a theorem of Khan in a generalized metric space
2013
Existence and uniqueness of fixed points are established for a mapping satisfying a contractive condition involving a rational expression on a generalized metric space. Several particular cases and applications as well as some illustrative examples are given.
A note on the Banach space of preregular maps
2011
The aim of this paper is to give simple proofs for Jeurnink's characterizations of preregular maps in terms of Θ-maps acting between Banach lattices. For Banach lattices E and F, we achieve our goal by considering the space Lβ(E, F) of all those linear maps T: E → F for which there exists a constant K such that {double pipe}Vn i=1 {pipe}Txi{pipe} ≤ K {double pipe}Vn i=1{pipe}xi for all finite sequences x1, ..., xn e{open}E. We show that, if Lβ(E; F), and the spaces L Θ (E; F) of Θ -map and Lpr(E; F) of preregular maps are respectively endowed with their canonical norms, then they are identical Banach spaces
An integral for a banach valued function
2009
Abstract Using partitions of the unity ((PU)-partition), a new definition of an integral is given for a function f : [a, b] → X, where X is a Banach space, and it is proved that this integral is equivalent to the Bochner integral.
A Unifying Approach to Weyl Type Theorems for Banach Space Operators
2013
Weyl type theorems have been proved for a considerably large number of classes of operators. In this paper, by introducing the class of quasi totally hereditarily normaloid operators, we obtain a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. This framework also entails Weyl type theorems for perturbations f(T + K), where K is algebraic and commutes with T, and f is an analytic function, defined on an open neighborhood of the spectrum of T + K, such that f is non constant on each of the components of its domain.