Search results for "matematica"
showing 10 items of 1637 documents
Common fixed point theorems for multi-valued maps
2012
Abstract We establish some results on coincidence and common fixed points for a two-pair of multi-valued and single-valued maps in complete metric spaces. Presented theorems generalize recent results of Gordji et al [4] and several results existing in the literature.
Meir-Keeler Type Contractions for Tripled Fixed Points
2012
Abstract In 2011, Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces. In our paper, we give some new tripled fixed point theorems by using a generalization of Meir-Keeler contraction.
Domination spaces and factorization of linear and multilinear summing operators
2015
[EN] It is well known that not every summability property for multilinear operators leads to a factorization theorem. In this paper we undertake a detailed study of factorization schemes for summing linear and nonlinear operators. Our aim is to integrate under the same theory a wide family of classes of mappings for which a Pietsch type factorization theorem holds. Our construction includes the cases of absolutely p-summing linear operators, (p, sigma)-absolutely continuous linear operators, factorable strongly p-summing multilinear operators, (p(1), ... , p(n))-dominated multilinear operators and dominated (p(1), ... , p(n); sigma)-continuous multilinear operators.
Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces
2012
Abstract In this paper, we introduce the concept of a partial Hausdorff metric. We initiate study of fixed point theory for multi-valued mappings on partial metric space using the partial Hausdorff metric and prove an analogous to the well-known Nadlerʼs fixed point theorem. Moreover, we give a homotopy result as application of our main result.
Semi-compatible and reciprocally continuous maps in weak non-Archimedean Menger PM-spaces
2012
In this paper, we introduce semi-compatible maps and reciprocally continuous maps in weak non-Archimedean PM-spaces and establish a common fixed point theorem for such maps. Moreover, we show that, in the context of reciprocal continuity, the notions of compatibility and semi-compatibility of maps become equivalent. Our result generalizes several fixed point theorems in the sense that all maps involved in the theorem can be discontinuous even at the common fixed point.
Some Classes of Operators on Partial Inner Product Spaces
2012
Many families of function spaces, such as $L^{p}$ spaces, Besov spaces, amalgam spaces or modulation spaces, exhibit the common feature of being indexed by one parameter (or more) which measures the behavior (regularity, decay properties) of particular functions. All these families of spaces are, or contain, scales or lattices of Banach spaces and constitute special cases of the so-called \emph{partial inner product spaces (\pip s)} that play a central role in analysis, in mathematical physics and in signal processing (e.g. wavelet or Gabor analysis). The basic idea for this structure is that such families should be taken as a whole and operators, bases, frames on them should be defined glo…
Rademacher Theorem for Fréchet spaces
2010
Abstract Let X be a separable Frechet space. In this paper we define a class A of null sets in X that is properly contained in the class of Aronszajn null sets, and we prove that a Lipschitz map from an open subset of X into a Gelfand-Frechet space is Gateaux differentiable outside a set belonging to A. This is an extension to Frechet spaces of a result (see [PZ]) due to D. Preiss and L. Zajicek.
Fixed points and completeness on partial metric spaces
2015
Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a selfmapping on a partial metric space that characterizes the partial metric 0-completeness. In this paper we prove a fixed point result for a new class of…
Property (gab) through localized SVEP
2015
In this article we study the property (gab) for a bounded linear operator T 2 L(X) on a Banach space X which is a stronger variant of Browder's theorem. We shall give several characterizations of property (gab). These characterizations are obtained by using typical tools from local spectral theory. We also show that property (gab) holds for large classes of operators and prove the stability of property (gab) under some commuting perturbations. 2010 Mathematics Subject Classication. Primary 47A10, 47A11; Secondary 47A53, 47A55.
Berinde mappings in orbitally complete metric spaces
2011
Abstract We give a fixed point theorem for a self-mapping satisfying a general contractive condition of integral type in orbitally complete metric spaces. Some examples are given to illustrate our obtained result.