Search results for "materials science"

showing 10 items of 22356 documents

Evolution of the microstructure of sputter deposited TaAlON thin films with increasing oxygen partial pressure

2021

Abstract Recently, quaternary oxynitrides of transition metals and aluminum have attracted increasing interest due to their tunable properties. Within the present work, a series of TaAl(O)N films was sputter deposited using constant nitrogen and varying oxygen partial pressures. The films were grown from single element Ta and Al targets. The deposition parameters were adjusted to obtain a Ta/Al atomic ratio of ~50/50 for the oxygen-free film and were held constant for the following depositions, with the exception of the increasing oxygen partial pressure and compensatory decreasing argon partial pressure. Elastic recoil detection analysis revealed oxygen contents of up to ~26 at.%, while th…

010302 applied physicsArgonMaterials scienceAnalytical chemistrychemistry.chemical_element02 engineering and technologySurfaces and InterfacesGeneral ChemistryPartial pressureNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesOxygenNanocrystalline materialSurfaces Coatings and FilmsElastic recoil detectionchemistry0103 physical sciencesMaterials ChemistryAtomic ratioThin film0210 nano-technologySurface and Coatings Technology
researchProduct

Plastic yielding of glass in high-pressure torsion apparatus

2018

International audience; Hardness measurements performed at room temperature have demonstrated that glass can flow under elevated pressure, whereas the effect of high pressure on glass rheology remains poorly quantified. Here, we applied a high-pressure torsion (HPT) apparatus to deform SCHOTT SF6 â glass and attempted to quantify the effect of pressure and temperature on the shear deformation of glass subjected to pressures from 0.3 GPa to 7 GPa and temperatures from 25 ℃ to 496 ℃. Results show that the plastic yield deformation was occurring during the HPT experiments on the SF6 glass at elevated temperature from 350 ℃ to 496 ℃. The yield stress of SF6 glass decreases with increasing tempe…

010302 applied physicsArrhenius equationPlastic yieldingMaterials scienceYield (engineering)Deformation (mechanics)Plastic yieldingTorsion (mechanics)02 engineering and technologyActivation energy[SPI.MAT] Engineering Sciences [physics]/Materials021001 nanoscience & nanotechnology01 natural sciencesglass flow[SPI.MAT]Engineering Sciences [physics]/Materialspressuresymbols.namesakehigh-pressure torsionRheologyHigh pressure0103 physical sciencessymbolsGeneral Materials ScienceComposite material0210 nano-technologyInternational Journal of Applied Glass Science
researchProduct

Calibration of an airborne HO<sub><i>x</i></sub> instrument using the All Pressure Altitude-b…

2020

Abstract. Laser-induced fluorescence (LIF) is a widely used technique for both laboratory-based and ambient atmospheric chemistry measurements. However, LIF instruments require calibrations in order to translate instrument response into concentrations of chemical species. Calibration of LIF instruments measuring OH and HO2 ( HOx ) typically involves the photolysis of water vapor by 184.9 nm light, thereby producing quantitative amounts of OH and HO2 . For ground-based HOx instruments, this method of calibration is done at one pressure (typically ambient pressure) at the instrument inlet. However, airborne HOx instruments can experience varying cell pressures, internal residence times, tempe…

010302 applied physicsAtmospheric ScienceMaterials science010504 meteorology & atmospheric sciencesNozzleDetectorAnalytical chemistryHumidity01 natural sciencesAtmospheric chemistry0103 physical sciencesCalibrationPressure altitudeWater vapor0105 earth and related environmental sciencesAmbient pressureAtmospheric Measurement Techniques
researchProduct

Structural characterization and electrochemical hydrogen storage properties of Ti2LxZrxNi (x [ 0, 0.1, 0.2) alloys prepared by mechanical alloying

2013

International audience; Nominal Ti2Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The effect of milling time and Zr substitution for Ti on the microstructure was characterized by XRD, SEM and TEM, and the discharge capacities of Ti2xZrxNi (x 1/4 0, 0.1, 0.2) were examined by electrochemical measurements at galvanostatic conditions. XRD analysis shows that amorphous phase of Ti2Ni can be elaborated by 60 h of milling, whereas Zr substitution hinders amorphization process of the system. The products of ball milling nominal Ti2xZrxNi (x 1/4 0.1, 0.2) were austenitic (Ti, Zr)Ni and partly TiO, despite the fact that the operation was carrie…

010302 applied physicsAusteniteMaterials scienceRenewable Energy Sustainability and the Environment020209 energyMetallurgyEnergy Engineering and Power Technology02 engineering and technologyCondensed Matter PhysicsElectrochemistryMicrostructure01 natural sciences7. Clean energyCharacterization (materials science)Amorphous solidHydrogen storageFuel TechnologyChemical engineering0103 physical sciences0202 electrical engineering electronic engineering information engineering[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsBall millCurrent density
researchProduct

Optimum Design and Performance of an Electron Gun for a Ka-Band TWT

2019

This paper deals with optimum design and development of a thermionic electron gun to meet specified beam requirements within defined electric and geometric constraints for a Ka -band traveling wave tube (TWT) for space applications. The electron gun design is based on the Pierce method and carried out according to the iterative process indicated by Vaughan. The design of a periodic permanent magnet (PPM) beam focusing system for the stability of the beam is also required. A sensitivity analysis, by varying electric parameters and geometric parameters, is presented and taken into account as a fundamental role to the aim of optimizing the design of the Pierce gun. A cathode current value of 5…

010302 applied physicsBeam diameterMaterials sciencebusiness.industryTraveling-wave tubeSettore ING-INF/01 - Elettronica01 natural sciencesCathodeElectronic Optical and Magnetic Materialslaw.inventionSettore ING-IND/31 - ElettrotecnicaOpticslawcontrol grid electron gun PPM focusing system sensitivity analysis shadow grid TWTMagnet0103 physical sciencesKa bandElectrical and Electronic EngineeringbusinessBeam (structure)VoltageElectron gunIEEE Transactions on Electron Devices
researchProduct

Batch-to-Melt Conversion Kinetics in Sodium Aluminosilicate Batches Using Different Alumina Raw Materials

2016

The batch-to-melt conversion in batches of sand, soda ash and corundum (C), alumina spinel (A), boehmite (B), or gibbsite (G) as Al2O3 carrier are studied using thermal analysis, X-ray diffraction, and 27Al nuclear magnetic resonance spectroscopy. Laboratory-scaled batches are either heated continuously or quenched from 1600°C in a series of increasing dwell times. The results show that the conversion from the raw materials to the fresh melt proceeds in two kinetic stages. During the first stage (3–5 min), fast conversion of nearly 95% by mass occurs and the conversion coefficient increases in the order G < C ≈ A < B. The second stage is controlled by the slow dissolution of intermediate cr…

010302 applied physicsBoehmiteMaterials scienceSpinelAnalytical chemistryMineralogyCorundum02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesCristobalitechemistry.chemical_compoundchemistry0103 physical sciencesengineeringGeneral Materials Science0210 nano-technologyThermal analysisDissolutionGibbsiteSodium aluminosilicateInternational Journal of Applied Glass Science
researchProduct

Photoluminescence-Based Spatially Resolved Temperature Coefficient Maps of Silicon Wafers and Solar Cells

2020

In this article, we present a method to obtain implied open-circuit voltage images of silicon wafers and cells at different temperatures. The proposed method is then demonstrated by investigating the temperature coefficients of various regions across multicrystalline silicon wafers and cells from different heights of two bricks with different dislocation densities. Interestingly, both low and high temperature coefficients are found in dislocated regions on the wafers. A large spread of temperature coefficient is observed at regions with similar performance at 298 K. Reduced temperature sensitivity is found to be correlated with the increasing brick height and is exhibited by both wafers and…

010302 applied physicsBrickPhotoluminescenceMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsReduced properties0103 physical sciencesOptoelectronicsDegradation (geology)WaferElectrical and Electronic EngineeringDislocation0210 nano-technologybusinessTemperature coefficientImage resolutionIEEE Journal of Photovoltaics
researchProduct

A Novel Method for Characterizing Temperature Sensitivity of Silicon Wafers and Cells

2019

In this paper, we present a novel method to obtain temperature dependent lifetime and implied-open-circuit voltage (iV OC ) images of silicon wafers and solar cells. First, the method is validated by comparing the obtained values with global values acquired from lifetime measurements (for wafers) and current-voltage measurements (for cells). The method is then extended to acquire spatially resolved images of iV OC temperature coefficients of silicon wafers and cells. Potential applications of the proposed method are demonstrated by investigating the temperature coefficients of various regions across multi-crystalline silicon wafers and cells from different heights of two bricks with differe…

010302 applied physicsBrickTemperature sensitivityMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesReduced propertiesImpurity0103 physical sciencesOptoelectronicsWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessVoltage2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Pressure-induced instability of the fergusonite phase of EuNbO4 studied by in situ Raman spectroscopy, x-ray diffraction, and photoluminescence spect…

2020

In this article, we present high-pressure experimental investigations on EuNbO4, an interesting technologically important material, using synchrotron based x-ray powder diffraction, Raman spectroscopy, and europium photoluminescence measurements up to 39.2, 31.6, and 32.4 GPa, respectively. All three techniques show the stability of the ambient monoclinic phase until 20 GPa. Beyond that, a pressure-induced structural phase transition takes place with the coexistence of two phases over a wide pressure range. The structure of the high-pressure phase has been determined as orthorhombic (space group: Imma) with a volume discontinuity of nearly 9% at the transition indicating the nature of trans…

010302 applied physicsBulk modulusMaterials scienceAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyFergusonite01 natural sciencessymbols.namesakechemistry0103 physical sciencessymbolsOrthorhombic crystal system0210 nano-technologySpectroscopyEuropiumRaman spectroscopyPowder diffractionMonoclinic crystal systemJournal of Applied Physics
researchProduct

Elastic properties of the sigma W-Re phase: A first principles investigation

2017

Abstract We perform density functional theory (DFT) calculations to obtain the formation enthalpy and six independent elastic constants for the 32 possible occupations of the five non-equivalent sites of the σ -phase. The obtained results suggest linear correlation between bulk modulus and Re concentration and between shear modulus and formation enthalpy. The results are used to parameterize a sublattice model with ideal mixing on each sublattice for the free energy and elastic constants. The model allows one to predict the equilibrium composition on each sublattice and hence elastic constants as a function of global Re concentration and temperature of the W-Re alloy.

010302 applied physicsBulk modulusMaterials scienceMechanical EngineeringEnthalpyMetals and AlloysThermodynamicsSigma02 engineering and technologyFunction (mathematics)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesShear modulusMechanics of MaterialsPhase (matter)0103 physical sciencesGeneral Materials ScienceDensity functional theory0210 nano-technologyMixing (physics)Scripta Materialia
researchProduct