Search results for "math-ph"
showing 10 items of 525 documents
From particular polynomials to rational solutions to the KPI equation
2022
We construct solutions to the Kadomtsev-Petviashvili equation (KPI) from particular polynomials. We obtain rational solutions written as a second derivative with respect to the variable x of a logarithm of a determinant of order n. So we get with this method an infinite hierarchy of rational solutions to the KPI equation. We give explicitly the expressions of these solutions for the first five orders.
Rational solutions of order N to the KPI equation with multi-parameters and the explicit case of order 3
2022
We present multiparametric rational solutions to the Kadomtsev-Petviashvili equation (KPI). These solutions of order N depend on 2N − 2 real parameters. Explicit expressions of the solutions at order 3 are given. They can be expressed as a quotient of a polynomial of degree 2N (N + 1) − 2 in x, y and t by a polynomial of degree 2N (N + 1) in x, y and t, depending on 2N − 2 real parameters. We study the patterns of their modulus in the (x,y) plane for different values of time t and parameters.
Solutions to the Gardner equation with multiparameters and the rational case
2022
We construct solutions to the Gardner equation in terms of trigonometric and hyperbolic functions, depending on several real parameters. Using a passage to the limit when one of these parameters goes to 0, we get, for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 3. We easily deduce solutions to the mKdV equation in terms of wronskians as well as rational solutions depending on 2N real parameters.
Casimir-Lifshitz force out of thermal equilibrium between dielectric gratings
2014
We calculate the Casimir-Lifshitz pressure in a system consisting of two different 1D dielectric lamellar gratings having two different temperatures and immersed in an environment having a third temperature. The calculation of the pressure is based on the knowledge of the scattering operators, deduced using the Fourier Modal Method. The behavior of the pressure is characterized in detail as a function of the three temperatures of the system as well as the geometrical parameters of the two gratings. We show that the interplay between non-equilibrium effects and geometrical periodicity offers a rich scenario for the manipulation of the force. In particular, we find regimes where the force can…
Supersymmetric structures for second order differential operators
2012
Necessary and sufficient conditions are obtained for a real semiclassical partial differential operator of order two to possess a supersymmetric structure. For the operator coming from a chain of oscillators, coupled to two heat baths, we show the non-existence of a smooth supersymmetric structure, for a suitable interaction potential, provided that the temperatures of the baths are different.
Algebras of unbounded operators and physical applications: a survey
2009
After a historical introduction on the standard algebraic approach to quantum mechanics of large systems we review the basic mathematical aspects of the algebras of unbounded operators. After that we discuss in some details their relevance in physical applications.
Derivations of quasi *-algebras
2004
The spatiality of derivations of quasi*-algebras is investigated by means of representation theory. Moreover, in view of physical applications, the spatiality of the limit of a family of spatial derivations is considered.
Exact non-Markovian dynamics of Gaussian quantum channels: Finite-time and asymptotic regimes
2018
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a recently introduced necessary and sufficient criterion and the ensuing measure of non-Markovianity based on the violation of the divisibility property of the dynamical map. We compare the paradigmatic instances of Quantum Brownian motion (QBM) and Pure Damping (PD) channels, and for the former we find that the exact dynamical evolution is always non-Markovian in the finite-time as well as in the asymptotic regimes, for any nonvanishing value of the non-Markovianity parameter. If one resorts to the rotating wave approximated (RWA) form of the QBM, that neglects the anomalous diffusion contribut…
Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams
2000
Present and future high-precision tests of the Standard Model and beyond for the fundamental constituents and interactions in Nature are demanding complex perturbative calculations involving multi-leg and multi-loop Feynman diagrams. Currently, large effort is devoted to the search for closed expressions of loop integrals, written whenever possible in terms of known - often hypergeometric-type - functions. In this work, the scalar three-point function is re-evaluated by means of generalized hypergeometric functions of two variables. Finally, use is made of the connection between such Appell functions and dilogarithms coming from a previous investigation, to recover well-known results.
Porosities and dimensions of measures
1999
We introduce a concept of porosity for measures and study relations between dimensions and porosities for two classes of measures: measures on $R^n$ which satisfy the doubling condition and strongly porous measures on $R$.