Search results for "math-ph"
showing 10 items of 525 documents
Information-flux approach to multiple-spin dynamics
2007
We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning an…
Longterm damped dynamics of the extensible suspension bridge
2010
This work is focused on the doubly nonlinear equation, whose solutions represent the bending motion of an extensible, elastic bridge suspended by continuously distributed cables which are flexible and elastic with stiffness k^2. When the ends are pinned, long-term dynamics is scrutinized for arbitrary values of axial load p and stiffness k^2. For a general external source f, we prove the existence of bounded absorbing sets.When f is timeindependent, the related semigroup of solutions is shown to possess the global attractor of optimal regularity and its characterization is given in terms of the steady states of the problem.
Rational solutions to the KPI equation and multi rogue waves
2016
Abstract We construct here rational solutions to the Kadomtsev–Petviashvili equation (KPI) as a quotient of two polynomials in x , y and t depending on several real parameters. This method provides an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2 N ( N + 1 ) in x , y and t depending on 2 N − 2 real parameters for each positive integer N . We give explicit expressions of the solutions in the simplest cases N = 1 and N = 2 and we study the patterns of their modulus in the ( x , y ) plane for different values of time t and parameters.
Geometric Origin of the Tennis Racket Effect
2020
The tennis racket effect is a geometric phenomenon which occurs in a free rotation of a three-dimensional rigid body. In a complex phase space, we show that this effect originates from a pole of a Riemann surface and can be viewed as a result of the Picard-Lefschetz formula. We prove that a perfect twist of the racket is achieved in the limit of an ideal asymmetric object. We give upper and lower bounds to the twist defect for any rigid body, which reveals the robustness of the effect. A similar approach describes the Dzhanibekov effect in which a wing nut, spinning around its central axis, suddenly makes a half-turn flip around a perpendicular axis and the Monster flip, an almost impossibl…
Complex singularities and PDEs
2015
In this paper we give a review on the computational methods used to capture and characterize the complex singularities developed by some relevant PDEs. We begin by reviewing the classical singularity tracking method and give an example of application using the Burgers equation as a case study. This method is based on the analysis of the Fourier spectrum of the solution and it allows to determine and characterize the complex singularity closest to the real domain. We then introduce other methods generally used to detect the hidden singularities. In particular we show some applications of the Padé approximation, of the Kida method, and of Borel-Polya method. We apply these techniques to the s…
Analytic behavior of the QED polarizability function at finite temperature
2012
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is not analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calcul…
The Magnus expansion and some of its applications
2008
Approximate resolution of linear systems of differential equations with varying coefficients is a recurrent problem, shared by a number of scientific and engineering areas, ranging from Quantum Mechanics to Control Theory. When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to build up approximate exponential representations of the solution of the system. It provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory. Every Magnus approximant corresponds in Perturbation Theory to a partial re-summation of infinite terms with the important additional property of prese…
Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions
2013
AbstractNumerical solutions of the laminar Prandtl boundary-layer and Navier–Stokes equations are considered for the case of the two-dimensional uniform flow past an impulsively-started circular cylinder. The various viscous–inviscid interactions that occur during the unsteady separation process are investigated by applying complex singularity analysis to the wall shear and streamwise velocity component of the two solutions. This is carried out using two different methodologies, namely a singularity-tracking method and the Padé approximation. It is shown how the van Dommelen and Shen singularity that occurs in solutions of the Prandtl boundary-layer equations evolves in the complex plane be…
Deformed quons and bi-coherent states
2017
We discuss how a q-mutation relation can be deformed replacing a pair of conjugate operators with two other and unrelated operators, as it is done in the construction of pseudo-fermions, pseudo-bosons and truncated pseudo-bosons. This deformation involves interesting mathematical problems and suggests possible applications to pseudo-hermitian quantum mechanics. We construct bi-coherent states associated to $\D$-pseudo-quons, and we show that they share many of their properties with ordinary coherent states. In particular, we find conditions for these states to exist, to be eigenstates of suitable annihilation operators and to give rise to a resolution of the identity. Two examples are discu…
Pseudo-Bosons from Landau Levels
2010
We construct examples of pseudo-bosons in two dimensions arising from the Hamiltonian for the Landau levels. We also prove a no-go result showing that non-linear combinations of bosonic creation and annihilation operators cannot give rise to pseudo-bosons.