Search results for "math-ph"

showing 10 items of 525 documents

Construction of pseudo-bosons systems

2010

In a recent paper we have considered an explicit model of a PT-symmetric system based on a modification of the canonical commutation relation. We have introduced the so-called {\em pseudo-bosons}, and the role of Riesz bases in this context has been analyzed in detail. In this paper we consider a general construction of pseudo-bosons based on an explicit {coordinate-representation}, extending what is usually done in ordinary supersymmetric quantum mechanics. We also discuss an example arising from a linear modification of standard creation and annihilation operators, and we analyze its connection with coherent states.

Quantum PhysicsComputer sciencequantum mechanicsCreation and annihilation operatorsFOS: Physical sciencesStatistical and Nonlinear PhysicsContext (language use)Mathematical Physics (math-ph)pseudo-bosonConnection (mathematics)Canonical commutation relationAlgebraCoherent statesSupersymmetric quantum mechanicsQuantum statistical mechanicsRepresentation (mathematics)Quantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaMathematical Physics
researchProduct

Single-input perturbative control of a quantum symmetric rotor

2022

We consider the Schr\"odinger partial differential equation of a rotating symmetric rigid molecule (symmetric rotor) driven by a z-linearly polarized electric field, as prototype of degenerate infinite-dimensional bilinear control system. By introducing an abstract perturbative criterium, we classify its simultaneous approximate controllability; based on this insight, we numerically perform an orientational selective transfer of rotational population.

Quantum PhysicsControl and OptimizationFOS: Physical sciencesdifferential equations[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]rotationelectric fieldMathematics - Analysis of PDEsOptimization and Control (math.OC)Control and Systems EngineeringFOS: Mathematicscontrol systemQuantum Physics (quant-ph)Nonlinear Sciences::Pattern Formation and SolitonsMathematics - Optimization and Control[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]Analysis of PDEs (math.AP)
researchProduct

Operational Quantum Reference Frame Transformations

2023

We provide a general, operational, and rigorous basis for quantum reference frames and their transformations using covariant positive operator valued measures to represent frame observables. The framework holds for locally compact groups and differs from all prior proposals for frame changes, being built around the notion of operational equivalence, in which states that cannot be distinguished physically are identified. This allows for the construction of the space of (invariant) relative observables and the convex set of relative states as dual objects. By demanding a further equivalence relation on the relative states which takes into account the nature of the frames, we provide a quantum…

Quantum PhysicsFOS: Physical sciencesMathematical Physics (math-ph)Quantum Physics (quant-ph)Mathematical Physics
researchProduct

Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

2004

For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric $N$--mode Gaussian states, for arbitrary $N$. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We …

Quantum PhysicsLOCCLogarithmGaussianFOS: Physical sciencesGeneral Physics and AstronomyMathematical Physics (math-ph)Quantum PhysicsQuantum entanglementMeasure (mathematics)Condensed Matter - Other Condensed Mattersymbols.namesakeMultipartiteMonotone polygonQUANTUM TELEPORTATION NETWORKQubitsymbolsStatistical physicsQuantum Physics (quant-ph)Mathematical PhysicsOther Condensed Matter (cond-mat.other)Optics (physics.optics)Physics - OpticsMathematicsNew Journal of Physics
researchProduct

Nonequilibrium dynamics of nonconservative diffusion processes

2023

Fokker-Planck operators of diffusion processes with nonconservative drift fields, in dimension $N\geq 2$, can be directly related with non-Hermitian electromagnetic-type Hamiltonian generators of motion. The induced nonequilibrium dynamics of probability densities points towards an issue of path integral solutions of the Fokker-Planck equation, and calls for revisiting links between known exact path integral formulas for quantum propagators in real and Euclidean time, with these for Fokker-Planck-induced transition probability density functions. In below we shall follow the $N=3$ "magnetic thread", within which one encounters formally and conceptually distinct implementations of the magneti…

Quantum PhysicsMathematics - Analysis of PDEsStatistical Mechanics (cond-mat.stat-mech)FOS: MathematicsFOS: Physical sciencesMathematical Physics (math-ph)Quantum Physics (quant-ph)Condensed Matter - Statistical MechanicsMathematical PhysicsAnalysis of PDEs (math.AP)
researchProduct

Matrix Computations for the Dynamics of Fermionic Systems

2013

In a series of recent papers we have shown how the dynamical behavior of certain classical systems can be analyzed using operators evolving according to Heisenberg-like equations of motions. In particular, we have shown that raising and lowering operators play a relevant role in this analysis. The technical problem of our approach stands in the difficulty of solving the equations of motion, which are, first of all, {\em operator-valued} and, secondly, quite often nonlinear. In this paper we construct a general procedure which significantly simplifies the treatment for those systems which can be described in terms of fermionic operators. The proposed procedure allows to get an analytic solut…

Quantum PhysicsPhysics and Astronomy (miscellaneous)Series (mathematics)Computer scienceGeneral MathematicsComputationFOS: Physical sciencesEquations of motionQuantum dynamics for classical systemsMathematical Physics (math-ph)Construct (python library)Nonlinear systemMatrix (mathematics)Ladder operatorQuadratic equationApplied mathematicsQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsInternational Journal of Theoretical Physics
researchProduct

Non-self-adjoint graphs

2013

On finite metric graphs we consider Laplace operators, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties, existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians. Among other things, we describe a simple way how to relate the similarity transforms between Laplacians on certain graphs with elementary similarity transforms between matrices defining the boundary conditions.

Quantum PhysicsPure mathematicsLaplace transformApplied MathematicsGeneral MathematicsSpectral propertiesFOS: Physical sciencesMathematical Physics (math-ph)Mathematics::Spectral TheoryGraphMathematics - Spectral Theory510 MathematicsFOS: MathematicsBoundary value problemQuantum Physics (quant-ph)Spectral Theory (math.SP)Mathematical PhysicsSelf-adjoint operatorMathematics
researchProduct

Classical nature of ordered phases: origin of spontaneous symmetry breaking

2014

We investigate the nature of spontaneous symmetry breaking in complex quantum systems by conjecturing that the maximally symmetry breaking quantum ground states are the most classical ones corresponding to an ordered phase. We make this argument quantitatively precise by showing that the ground states which realize the maximum breaking of the Hamiltonian symmetries are the only ones that: I) are always locally convertible, i.e. can be obtained from all other ground states by local operations and classical communication, while the reverse is never possible; II) minimize the monogamy inequality for bipartite entanglement; III) minimize quantum correlations, as measured by the quantum discord,…

Quantum PhysicsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesMathematical Physics (math-ph)Quantum Physics (quant-ph)Condensed Matter - Statistical MechanicsMathematical Physics
researchProduct

Classical nature of ordered quantum phases and origin of spontaneous symmetry breaking

2016

We analyse the nature of spontaneous symmetry breaking in complex quantum systems by investigating the long-standing conjecture that the maximally symmetry-breaking quantum ground states are the most classical ones corresponding to a globally ordered phase. We make this argument quantitatively precise by comparing different local and global indicators of classicality and quantumness, respectively in symmetry-breaking and symmetry-preserving quantum ground states. We first discuss how naively comparing local, pairwise entanglement and discord apparently leads to the opposite conclusion. Indeed, we show that in symmetry-preserving ground states the two-body entanglement captures only a modest…

Quantum PhysicsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesMathematical Physics (math-ph)Quantum Physics (quant-ph)Condensed Matter - Statistical MechanicsMathematical Physics
researchProduct

Superharmonic double-well systems with zero-energy ground states: Relevance for diffusive relaxation scenarios

2022

Relaxation properties (specifically time-rates) of the Smoluchowski diffusion process on a line, in a confining potential $ U(x) \sim x^m$, $m=2n \geq 2$, can be spectrally quantified by means of the affiliated Schr\"{o}dinger semigroup $\exp (-t\hat{H})$, $t\geq 0$. The inferred (dimensionally rescaled) motion generator $\hat{H}= - \Delta + {\cal{V}}(x)$ involves a potential function ${\cal{V}}(x)= ax^{2m-2} - bx^{m-2}$, $a=a(m), b=b(m) >0$, which for $m>2$ has a conspicuous higher degree (superharmonic) double-well form. For each value of $m>2$, $ \hat{H}$ has the zero-energy ground state eigenfunction $\rho _*^{1/2}(x)$, where $\rho _*(x) \sim \exp -[U(x)]$ stands for the Boltzmann equil…

Quantum PhysicsStatistical Mechanics (cond-mat.stat-mech)General Physics and AstronomyFOS: Physical sciencesMathematical Physics (math-ph)Quantum Physics (quant-ph)Condensed Matter - Statistical MechanicsMathematical Physics
researchProduct