Search results for "math-ph"

showing 10 items of 525 documents

Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain

2010

We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system-size. Moreover, the corresponding amplitudes can be obtained as a product of a "smooth" and a "discrete" part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a …

Statistics and ProbabilityHigh Energy Physics - Theory[NLIN.NLIN-SI] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]LogarithmIntegrable systemfacteurs de formemodèles intégrables[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciencesPower law[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th][PHYS.COND.CM-SM] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Chain (algebraic topology)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesddc:550[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Limit (mathematics)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]010306 general physicsMathematical PhysicsCondensed Matter - Statistical MechanicsMathematical physicsPhysicsNonlinear Sciences - Exactly Solvable and Integrable SystemsStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]Massless particleHigh Energy Physics - Theory (hep-th)[ PHYS.COND.CM-SM ] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Thermodynamic limitfonctions de corélation[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Statistics Probability and UncertaintyExactly Solvable and Integrable Systems (nlin.SI)Critical exponent[ NLIN.NLIN-SI ] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]
researchProduct

Partition function of the trigonometric SOS model with reflecting end

2010

We compute the partition function of the trigonometric SOS model with one reflecting end and domain wall type boundary conditions. We show that in this case, instead of a sum of determinants obtained by Rosengren for the SOS model on a square lattice without reflection, the partition function can be represented as a single Izergin determinant. This result is crucial for the study of the Bethe vectors of the spin chains with non-diagonal boundary terms.

Statistics and ProbabilityHigh Energy Physics - Theory[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Domain wall boundary conditionsopen spin chainsFOS: Physical sciencesBoundary (topology)Type (model theory)01 natural sciences[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]Domain wall (string theory)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesASEPBoundary value problem010306 general physicsMathematical PhysicsMathematicsPartition function (quantum field theory)010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Mathematical analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Algebraic Bethe ansatzStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Square latticeReflection (mathematics)High Energy Physics - Theory (hep-th)[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Statistics Probability and UncertaintyTrigonometry
researchProduct

Bi-squeezed states arising from pseudo-bosons

2018

Extending our previous analysis on bi-coherent states, we introduce here a new class of quantum mechanical vectors, the \emph{bi-squeezed states}, and we deduce their main mathematical properties. We relate bi-squeezed states to the so-called regular and non regular pseudo-bosons. We show that these two cases are different, from a mathematical point of view. Some physical examples are considered.

Statistics and ProbabilityMathematical propertiesFOS: Physical sciencesGeneral Physics and Astronomysqueezed state01 natural sciences010305 fluids & plasmasModeling and simulationPhysics and Astronomy (all)Theoretical physics0103 physical sciencesMathematical PhysicPoint (geometry)010306 general physicsSettore MAT/07 - Fisica MatematicaQuantumMathematical PhysicsBosonPhysicsQuantum PhysicsStatistical and Nonlinear PhysicsProbability and statisticsMathematical Physics (math-ph)pseudo-bosonModeling and SimulationCoherent statesQuantum Physics (quant-ph)Coherent stateStatistical and Nonlinear PhysicJournal of Physics A: Mathematical and Theoretical
researchProduct

Generalized Heisenberg algebra and (non linear) pseudo-bosons

2018

We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.

Statistics and ProbabilityPhysical systemGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesbiorthogonal bases in quantum mechanicPhysics and Astronomy (all)0103 physical sciencesMathematical PhysicAlgebra over a field010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsBoson[PHYS]Physics [physics]Quantum Physics010308 nuclear & particles physicsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)pseudo-bosonAlgebraNonlinear systemModeling and Simulationgeneralized Heisenberg algebraQuantum Physics (quant-ph)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Statistical and Nonlinear Physic
researchProduct

First results on applying a non-linear effect formalism to alliances between political parties and buy and sell dynamics

2016

We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the \emph{interest} of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call \emph{the decision functions} is deduced by introducing a suitable hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their \emph{environments}, {which are }generated by their electors and by people who still have no clear {idea }for which party to vote (or even if to vote). The hamiltonian contains some non-linear effects, which takes into…

Statistics and ProbabilityPhysics - Physics and SocietyFormal structureFOS: Physical sciencesPhysics and Society (physics.soc-ph)01 natural sciences010305 fluids & plasmassymbols.namesakePolitics0103 physical sciencesQuantum models in macroscopic system010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsEconophysicsEconophysicMathematical Physics (math-ph)Condensed Matter PhysicsNonlinear systemFormalism (philosophy of mathematics)AlliancesymbolsDecision processHamiltonian (quantum mechanics)Mathematical economicsPhysica A: Statistical Mechanics and its Applications
researchProduct

Microscopic approach to a class of 1D quantum critical models

2015

Starting from the finite volume form factors of local operators, we show how and under which hypothesis the $c=1$ free boson conformal field theory in two-dimensions emerges as an effective theory governing the large-distance regime of multi-point correlation functions in a large class of one dimensional massless quantum Hamiltonians. In our approach, in the large-distance critical regime, the local operators of the initial model are represented by well suited vertex operators associated to the free boson model. This provides an effective field theoretic description of the large distance behaviour of correlation functions in 1D quantum critical models. We develop this description starting f…

Statistics and ProbabilityPhysicsClass (set theory)Finite volume methodStatistical Mechanics (cond-mat.stat-mech)Field (physics)Nonlinear Sciences - Exactly Solvable and Integrable SystemsConformal field theory[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Matrix (mathematics)Theoretical physicsModeling and SimulationEffective field theory[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Exactly Solvable and Integrable Systems (nlin.SI)QuantumMathematical PhysicsCondensed Matter - Statistical MechanicsBoson
researchProduct

Surface free energy of the open XXZ spin-1/2 chain

2012

We study the boundary free energy of the XXZ spin-$\tf{1}{2}$ chain subject to diagonal boundary fields. We first show that the representation for its finite Trotter number approximant obtained by Bortz, Frahm and G\"{o}hmann is related to the partition function of the six-vertex model with reflecting ends. Building on the Tsuchiya determinant representation for the latter quantity we are able to take the infinite Trotter number limit. This yields a representation for the surface free energy which involves the solution of the non-linear integral equation that governs the thermodynamics of the XXZ spin-1/2 chain subject to periodic boundary conditions. We show that this integral representati…

Statistics and ProbabilityPhysicsHigh Energy Physics - TheoryPartition function (statistical mechanics)Statistical Mechanics (cond-mat.stat-mech)Nonlinear Sciences - Exactly Solvable and Integrable SystemsDiagonalMathematical analysisFOS: Physical sciencesBoundary (topology)Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Function (mathematics)Integral equationHigh Energy Physics - Theory (hep-th)Chain (algebraic topology)Periodic boundary conditionsExactly Solvable and Integrable Systems (nlin.SI)Statistics Probability and UncertaintyCondensed Matter - Statistical MechanicsMathematical PhysicsSpin-½
researchProduct

Complete spectrum and scalar products for the open spin-1/2 XXZ quantum chains with non-diagonal boundary terms

2013

We use the quantum separation of variable (SOV) method to construct the eigenstates of the open XXZ chain with the most general boundary terms. The eigenstates in the inhomogeneous case are constructed in terms of solutions of a system of quadratic equations. This SOV representation permits us to compute scalar products and can be used to calculate form factors and correlation functions.

Statistics and ProbabilityPhysicsHigh Energy Physics - TheoryStatistical Mechanics (cond-mat.stat-mech)Nonlinear Sciences - Exactly Solvable and Integrable Systems010308 nuclear & particles physicsDiagonalScalar (mathematics)Separation of variablesFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)01 natural sciencesQuadratic equationNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics - Theory (hep-th)0103 physical sciencesExactly Solvable and Integrable Systems (nlin.SI)Statistics Probability and Uncertainty010306 general physicsQuantumEigenvalues and eigenvectorsMathematical PhysicsCondensed Matter - Statistical MechanicsMathematical physics
researchProduct

Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables

2014

28 pages; International audience; We solve the longstanding problem to define a functional characterization of the spectrum of the transfer matrix associated to the most general spin-1/2 representations of the 6-vertex reflection algebra for general inhomogeneous chains. The corresponding homogeneous limit reproduces the spectrum of the Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most general integrable boundaries. The spectrum is characterized by a second order finite difference functional equation of Baxter type with an inhomogeneous term which vanishes only for some special but yet interesting non-diagonal boundary conditions. This functional equation is shown to…

Statistics and ProbabilityPhysicsIntegrable system010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Finite differenceSeparation of variablesStatistical and Nonlinear Physics01 natural sciencesTransfer matrixBethe ansatzsymbols.namesake0103 physical sciencessymbols[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Boundary value problemStatistics Probability and Uncertainty010306 general physicsHamiltonian (quantum mechanics)QuantumMathematical physics
researchProduct

Quantum graphs with mixed dynamics: the transport/diffusion case

2013

We introduce a class of partial differential equations on metric graphs associated with mixed evolution: on some edges we consider diffusion processes, on other ones transport phenomena. This yields a system of equations with possibly nonlocal couplings at the boundary. We provide sufficient conditions for these to be governed by a contractive semigroup on a Hilbert space naturally associated with the system. We show that our setting is also adequate to discuss specific systems of diffusion equations with boundary delays.

Statistics and ProbabilityPhysicsPartial differential equationSemigroupMathematical analysis34B45 47D06 47N50Hilbert spaceFOS: Physical sciencesGeneral Physics and AstronomyBoundary (topology)Statistical and Nonlinear PhysicsMathematical Physics (math-ph)System of linear equationssymbols.namesakeMathematics - Analysis of PDEsModeling and SimulationQuantum graphFOS: MathematicssymbolsDiffusion (business)Transport phenomenaMathematical PhysicsAnalysis of PDEs (math.AP)
researchProduct