Search results for "math-ph"

showing 10 items of 525 documents

Induced and reduced unbounded operator algebras

2012

The induction and reduction precesses of an O*-vector space \({{\mathfrak M}}\) obtained by means of a projection taken, respectively, in \({{\mathfrak M}}\) itself or in its weak bounded commutant \({{\mathfrak M}^\prime_{\rm w}}\) are studied. In the case where \({{\mathfrak M}}\) is a partial GW*-algebra, sufficient conditions are given for the induced and the reduced spaces to be partial GW*-algebras again.

Unbounded operatorDiscrete mathematicsReduction (recursion theory)Applied MathematicsMathematics - Operator AlgebrasFOS: Physical sciencesMathematical Physics (math-ph)Space (mathematics)Centralizer and normalizerPrime (order theory)CombinatoricsProjection (relational algebra)Bounded functionInduced representationreduced representation: unbounded operator algebrasFOS: MathematicsOperator Algebras (math.OA)Mathematics::Representation TheoryMathematical PhysicsMathematics
researchProduct

A bounded version of bosonic creation and annihilation operators and their related quasi-coherent states

2007

Coherent states are usually defined as eigenstates of an unbounded operator, the so-called annihilation operator. We propose here possible constructions of {\em quasi-coherent states}, which turn out to be {\em quasi} eigenstate of a \underline{bounded} operator related to an annihilation-like operator. We use this bounded operator to construct a sort of modified harmonic oscillator and we analyze the dynamics of this oscillator from an algebraic point of view.

Unbounded operatorPhysicsOperator (physics)Creation and annihilation operatorsFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)bosonic operatorBounded operatorBounded functionCoherent statesCoherent statesSettore MAT/07 - Fisica MatematicaEigenvalues and eigenvectorsHarmonic oscillatorMathematical PhysicsMathematical physics
researchProduct

Ultrarelativistic bound states in the spherical well

2016

We address an eigenvalue problem for the ultrarelativistic (Cauchy) operator $(-\Delta )^{1/2}$, whose action is restricted to functions that vanish beyond the interior of a unit sphere in three spatial dimensions. We provide high accuracy spectral datafor lowest eigenvalues and eigenfunctions of this infinite spherical well problem. Our focus is on radial and orbital shapes of eigenfunctions. The spectrum consists of an ordered set of strictly positive eigenvalues which naturally splits into non-overlapping, orbitally labelled $E_{(k,l)}$ series. For each orbital label $l=0,1,2,...$ the label $k =1,2,...$ enumerates consecutive $l$-th series eigenvalues. Each of them is $2l+1$-degenerate. …

Unit sphereHigh Energy Physics - TheoryFOS: Physical sciences01 natural sciences010305 fluids & plasmasMathematics - Spectral Theory0103 physical sciencesBound stateFOS: Mathematics010306 general physicsSpectral Theory (math.SP)Eigenvalues and eigenvectorsMathematical PhysicsMathematical physicsPhysicsQuantum PhysicsSeries (mathematics)Operator (physics)Spectrum (functional analysis)Cauchy distributionStatistical and Nonlinear PhysicsMathematical Physics (math-ph)EigenfunctionMathematics::Spectral TheoryHigh Energy Physics - Theory (hep-th)Quantum Physics (quant-ph)Journal of Mathematical Physics/ AIP
researchProduct

Relations between multi-resolution analysis and quantum mechanics

2005

We discuss a procedure to construct multiresolution analyses (MRA) of L2 (R) starting from a given seed function h (s) which should satisfy some conditions. Our method, originally related to the quantum mechanical Hamiltonian of the fractional quantum Hall effect, is shown to be model independent. The role of a canonical map between certain canonically conjugate operators is discussed. This clarifies our previous procedure and makes much easier most of the original formulas, producing a convenient framework to produce examples of MRA. © 2005 American Institute of Physics.

WindowsPure mathematicsfast parallelMultiresolution analysisFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Quantum Hall effectMathematical Operatorshall effectsymbols.namesakeFractional quantum Hall effectLinear algebrasymbolsMathematical transformationsCanonical mapHamiltonian (quantum mechanics)Settore MAT/07 - Fisica MatematicaQuantumMathematical PhysicsMathematics
researchProduct

Wronskian representation of solutions of NLS equation, and seventh order rogue wave.

2012

This work is a continuation of a recent paper in which we have constructed a multi-parametric family of the nonlinear Schrodinger equation in terms of wronskians. When we perform a special passage to the limit, we get a family of quasi-rational solutions expressed as a ratio of two determinants. We have already construct Peregrine breathers of orders N=4, 5, 6 in preceding works; we give here the Peregrine breather of order seven.

WronskianBreather[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinant01 natural sciences010305 fluids & plasmassymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable Systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencessymbolsOrder (group theory)Limit (mathematics)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Rogue wave010306 general physicsRepresentation (mathematics)Nonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsMathematicsMathematical physics
researchProduct

Computational approach to compact Riemann surfaces

2017

International audience; A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on…

[ MATH ] Mathematics [math]Fundamental groupEquations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Holomorphic functionGeneral Physics and AstronomyFOS: Physical sciences010103 numerical & computational mathematics01 natural sciencessymbols.namesakeMathematics - Algebraic Geometrynumerical methodsFOS: MathematicsSpectral Methods0101 mathematics[MATH]Mathematics [math]Algebraic Geometry (math.AG)Mathematical PhysicsMathematicsCurvesKadomtsev-Petviashvili equationCollocationNonlinear Sciences - Exactly Solvable and Integrable SystemsPlane (geometry)Applied MathematicsRiemann surface010102 general mathematicsMathematical analysisStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Methods of contour integrationHyperelliptic Theta-FunctionsRiemann surfacessymbolsDispersion Limit[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Algebraic curveExactly Solvable and Integrable Systems (nlin.SI)Complex plane
researchProduct

Rotation Forms and Local Hamiltonian Monodromy

2017

International audience; The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach …

[ MATH ] Mathematics [math]Pure mathematicsIntegrable systemFOCUS-FOCUS SINGULARITIESmath-phFOS: Physical sciencesDynamical Systems (math.DS)Homology (mathematics)01 natural sciencesSingularityMathematics::Algebraic Geometrymath.MPSYSTEMS0103 physical sciencesFOS: Mathematics0101 mathematicsAbelian groupMathematics - Dynamical Systems[MATH]Mathematics [math]010306 general physicsMathematics::Symplectic GeometryMathematical PhysicsMathematicsNEIGHBORHOODS[PHYS]Physics [physics][ PHYS ] Physics [physics]010102 general mathematicsSpherical pendulumStatistical and Nonlinear PhysicsTorusMathematical Physics (math-ph)37JxxMonodromyStatistical and Nonlinear Physics; Mathematical PhysicsGravitational singularityPOINTSmath.DS
researchProduct

The tennis racket effect in a three-dimensional rigid body

2017

We propose a complete theoretical description of the tennis racket effect, which occurs in the free rotation of a three-dimensional rigid body. This effect is characterized by a flip ($\pi$- rotation) of the head of the racket when a full ($2\pi$) rotation around the unstable inertia axis is considered. We describe the asymptotics of the phenomenon and conclude about the robustness of this effect with respect to the values of the moments of inertia and the initial conditions of the dynamics. This shows the generality of this geometric property which can be found in a variety of rigid bodies. A simple analytical formula is derived to estimate the twisting effect in the general case. Differen…

[ MATH ] Mathematics [math]media_common.quotation_subject[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Euler anglesFOS: Physical sciencesPhysics - Classical PhysicsInertiaRotation01 natural sciences010305 fluids & plasmassymbols.namesakeSimple (abstract algebra)0103 physical sciencesRacketClassical mechanics[MATH]Mathematics [math]010306 general physicsmedia_commonMathematicscomputer.programming_language[PHYS]Physics [physics][ PHYS ] Physics [physics]Dynamics (mechanics)Classical Physics (physics.class-ph)Statistical and Nonlinear PhysicsMoment of inertiaCondensed Matter PhysicsRigid bodyEuler anglesClassical mechanicsGeometric effectsymbols[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]computerPhysica D: Nonlinear Phenomena
researchProduct

Topological Hopf algebras, quantum groups and deformation quantization

2003

After a presentation of the context and a brief reminder of deformation quantization, we indicate how the introduction of natural topological vector space topologies on Hopf algebras associated with Poisson Lie groups, Lie bialgebras and their doubles explains their dualities and provides a comprehensive framework. Relations with deformation quantization and applications to the deformation quantization of symmetric spaces are described

[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]quantum groups[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]FOS: Physical sciences[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG]topological vector spacesMathematical Physics (math-ph)[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]deformation quantizationMathematics - Symplectic GeometryHopf algebras54C40 14E20 (primary) 46E25 20C20 (secondary)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Quantum Algebra (math.QA)Symplectic Geometry (math.SG)Mathematical Physics
researchProduct

$PT$-symmetry and Schrödinger operators. The double well case

2016

International audience; We study a class of $PT$-symmetric semiclassical Schrodinger operators, which are perturbations of a selfadjoint one. Here, we treat the case where the unperturbed operator has a double-well potential. In the simple well case, two of the authors have proved in [6] that, when the potential is analytic, the eigenvalues stay real for a perturbation of size $O(1)$. We show here, in the double-well case, that the eigenvalues stay real only for exponentially small perturbations, then bifurcate into the complex domain when the perturbation increases and we get precise asymptotic expansions. The proof uses complex WKB-analysis, leading to a fairly explicit quantization condi…

[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP]MSC: 35P20 81Q12 81Q20 35Q40Complex WKB analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]EigenvaluesMathematics::Spectral TheoryPT-symmetryMathematics - Spectral Theory[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]35P20 35Q40 81Q12 81Q20Quantization conditonSchrödinger operatorsMathematical Physics[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
researchProduct