Search results for "mathematical analysis"
showing 10 items of 2409 documents
FINITE ELEMENT RESOLUTION OF CONVECTION-DIFFUSION EQUATIONS WITH INTERIOR AND BOUNDARY LAYERS
1996
We present a new algorithm for the resolution of both interior and boundary layers present in the convection-diffusion equation in laminar regimes, based on the formulation of a family of polynomial-exponential elements. We have carried out an adaptation of the standard variational methods (finite element method and spectral element method), obtaining an algorithm which supplies non-oscillatory and accurate solutions. The algorithm consists of generating a coupled grid of polynomial standard elements and polynomial-exponential elements. The latter are able to represent the high gradients of the solution, while the standard elements represent the solution in the areas of smooth variation.
On Functions of Integrable Mean Oscillation
2005
Given we denote by the modulus of mean oscillation given by where is an arc of , stands for the normalized length of , and . Similarly we denote by the modulus of harmonic oscillation given by where and stand for the Poisson kernel and the Poisson integral of respectively. It is shown that, for each , there exists such that
Constrained control of a nonlinear two point boundary value problem, I
1994
In this paper we consider an optimal control problem for a nonlinear second order ordinary differential equation with integral constraints. A necessary optimality condition in form of the Pontryagin minimum principle is derived. The proof is based on McShane-variations of the optimal control, a thorough study of their behaviour in dependence of some denning parameters, a generalized Green formula for second order ordinary differential equations with measurable coefficients and certain tools of convex analysis.
The branch set of a quasiregular mapping between metric manifolds
2016
Abstract In this note, we announce some new results on quantitative countable porosity of the branch set of a quasiregular mapping in very general metric spaces. As applications, we solve a recent conjecture of Fassler et al., an open problem of Heinonen–Rickman, and an open question of Heinonen–Semmes.
Shape optimization of elasto-plastic bodies under plane strains: Sensitivity analysis and numerical implementation
1992
Optimal shape design problems for an elastic body made from physically nonlinear material are presented. Sensitivity analysis is done by differentiating the discrete equations of equilibrium. Numerical examples are included.
Free boundary methods and non-scattering phenomena
2021
We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from t…
Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry
2017
This work deals with free transport equations with partly diffuse stochastic boundary operators in slab geometry. Such equations are governed by stochastic semigroups in $L^{1}$ spaces$.\ $We prove convergence to equilibrium at the rate $O\left( t^{-\frac{k}{2(k+1)+1}}\right) \ (t\rightarrow +\infty )$ for $L^{1}$ initial data $g$ in a suitable subspace of the domain of the generator $T$ where $k\in \mathbb{N}$ depends on the properties of the boundary operators near the tangential velocities to the slab. This result is derived from a quantified version of Ingham's tauberian theorem by showing that $F_{g}(s):=\lim_{\varepsilon \rightarrow 0_{+}}\left( is+\varepsilon -T\right) ^{-1}g$ exists…
Exploring chemical reactivity of complex systems with path-based coordinates: role of the distance metric.
2014
Path-based reaction coordinates constitute a valuable tool for free-energy calculations in complex processes. When a reference path is defined by means of collective variables, a nonconstant distance metric that incorporates the nonorthonormality of these variables should be taken into account. In this work, we show that, accounting for the correct metric tensor, these kind of variables can provide iso-hypersurfaces that coincide with the iso-committor surfaces and that activation free energies equal the value that would be obtained if the committor function itself were used as reaction coordinate. The advantages of the incorporation of the variable metric tensor are illustrated with the an…
On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations
2016
In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.
On Ekeland's variational principle in partial metric spaces
2015
In this paper, lower semi-continuous functions are used to extend Ekeland's variational principle to the class of parti al metric spaces. As consequences of our results, we obtain some fixed p oint theorems of Caristi and Clarke types.