Search results for "mathematical analysis"

showing 10 items of 2409 documents

On quasi-denting points, denting faces and the geometry of the unit ball ofd(w, 1)

1994

Unit sphereGeneral MathematicsMathematical analysisGeometryMathematicsArchiv der Mathematik
researchProduct

Multilinear Fourier multipliers related to time–frequency localization

2013

We consider multilinear multipliers associated in a natural way with localization operators. Boundedness and compactness results are obtained. In particular, we get a geometric condition on a subset A⊂R2d which guarantees that, for a fixed synthesis window ψ∈L2(Rd), the family of localization operators Lφ,ψA obtained when the analysis window φ varies on the unit ball of L2(Rd) is a relatively compact set of compact operators.

Unit sphereMultilinear mapApplied MathematicsMathematical analysisCompact operatorCompact operator on Hilbert spaceTime–frequency analysissymbols.namesakeFourier transformCompact spaceRelatively compact subspacesymbolsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

An extension of Guo's theorem via k--contractive retractions

2006

Abstract Let X be a infinite-dimensional Banach space. We generalize Guo's Theorem [D.J. Guo, Eigenvalues and eigenvectors of nonlinear operators, Chinese Ann. Math. 2 (1981) 65–80 [English]] to k- ψ -contractions and condensing mappings, under a condition which depends on the infimum k ψ of all k ⩾ 1 for which there exists a k- ψ -contractive retraction of the closed unit ball of the space X onto its boundary.

Unit spherePure mathematicsApplied MathematicsMathematical analysisFixed-point indexBanach spaceInfimum and supremumAnalysisEigenvalues and eigenvectorsNonlinear operatorsMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

On holomorphic functions attaining their norms

2004

Abstract We show that on a complex Banach space X , the functions uniformly continuous on the closed unit ball and holomorphic on the open unit ball that attain their norms are dense provided that X has the Radon–Nikodym property. We also show that the same result holds for Banach spaces having a strengthened version of the approximation property but considering just functions which are also weakly uniformly continuous on the unit ball. We prove that there exists a polynomial such that for any fixed positive integer k , it cannot be approximated by norm attaining polynomials with degree less than k . For X=d ∗ (ω,1) , a predual of a Lorentz sequence space, we prove that the product of two p…

Unit spherePure mathematicsMathematics::Functional AnalysisLorentz sequence spaceFunction spaceApproximation propertyApplied MathematicsMathematical analysisBanach spaceHolomorphic functionNorm attainingHolomorphic functionPolynomialUniform continuityNorm (mathematics)Ball (mathematics)AnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Quasiconformal mappings and F-harmonic measure

1983

Unit sphereQuasiconformal mappingMathematical analysisHarmonic measureMathematics
researchProduct

Geometric mean and triangles inscribed in a semicircle in Banach spaces

2008

AbstractWe consider the triangles with vertices x, −x and y where x,y are points on the unit sphere of a normed space. Using the geometric means of the variable lengths of the sides of these triangles, we define two geometric constants for Banach spaces. These constants are closely related to the modulus of convexity of the space under consideration, and they seem to represent a useful tool to estimate the exact values of the James and Jordan–von Neumann constants of some Banach spaces.

Unit sphereUniformly non-square Banach spacePure mathematicsApplied MathematicsMathematical analysisBanach spaceUniformly convex spaceBanach manifoldModulus of convexitySpace (mathematics)Normal structureConvexityGeometry of normed spacesInterpolation spaceLp spaceAnalysisNormed vector spaceMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere

2013

Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.

Unit spheren-sphereGeodesicApplied MathematicsMathematical analysisA domainharmonic flowsOctant (solid geometry)non-convex variational problems1-harmonic flowlower semi-continuity and relaxation; total variation flow; 1-harmonic flow; non-convex variational problems; image processing; geodesic; partial differential equations; harmonic flowsimage processingHomogeneoustotal variation flowNeumann boundary conditionJumppartial differential equationslower semi-continuity and relaxationgeodesicMathematics
researchProduct

THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE

2014

We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the [math] -distance — from a domain of [math] into a hyperoctant of the [math] -dimensional unit sphere, [math] , under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on [math] with respect to a metric w…

Unit spherenonconvex variational problemsriemannian manifolds with boundaryGeodesicn-sphereharmonic flows68U1053C2253C4435K9235K67Neumann boundary conditionpartial differential equations49J45MathematicsNumerical Analysisnonlinear parabolic systems; lower semicontinuity and relaxation; total variation flow; 1-harmonic flow; image processing; harmonic flows; partial differential equations; image processing.; geodesics; riemannian manifolds with boundary; nonconvex variational problemslower semicontinuity and relaxation58E20Applied MathematicsMathematical analysis49Q201-harmonic flowimage processingFlow (mathematics)35K55Metric (mathematics)total variation flowVector fieldnonlinear parabolic systemsBalanced flowAnalysisgeodesics
researchProduct

Rotationally symmetric p -harmonic maps fromD2toS2

2013

We consider rotationally symmetric p-harmonic maps from the unit disk D2⊂R2 to the unit sphere S2⊂R3, subject to Dirichlet boundary conditions and with 1<p<∞. We show that the associated energy functional admits a unique minimizer which is of class C∞ in the interior and C1 up to the boundary. We also show that there exist infinitely many global solutions to the associated Euler–Lagrange equation and we completely characterize them.

Unit spheresymbols.namesakeClass (set theory)Applied MathematicsDirichlet boundary conditionMathematical analysissymbolsHarmonic mapBoundary (topology)Unit diskAnalysisMathematicsEnergy functionalJournal of Differential Equations
researchProduct

Unitary transformations depending on a small parameter

2011

We formulate a unitary perturbation theory for quantum mechanics inspired by the LieDeprit formulation of canonical transformations. The original Hamiltonian is converted into a solvable one by a transformation obtained through a Magnus expansion. This ensures unitarity at every order in a small parameter. A comparison with the standard perturbation theory is provided. We work out the scheme up to order ten with some simple examples.

UnitarityGeneral MathematicsMathematical analysisquantum mechanicsGeneral EngineeringGeneral Physics and AstronomyUnitary transformationMagnus expansionUnitary statesymbols.namesakeMagnus expansionsymbolsHamiltonian (quantum mechanics)unitary transformationMathematical physicsMathematicsperturbation theory
researchProduct