Search results for "mathematical analysis"
showing 10 items of 2409 documents
Limiting Carleman weights and conformally transversally anisotropic manifolds
2020
We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, 3 3 -manifolds, and 4 4 -manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman weights, and show that there are only three basic such weights up to the action of the conformal group. In dimension three we show that if the manifold is not conformally flat, there could be one or two limiting Carleman weights. We also characterize the metrics that have more than one limiting Carleman weight. In dimension four we obtain a complete spectrum of examples according to the structure of the Weyl tensor. In particular, we construct unimodular Lie groups whose …
The Calderón problem for the fractional Schrödinger equation with drift
2020
We investigate the Calder\'on problem for the fractional Schr\"odinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, this nonlocal problem does \emph{not} enjoy a gauge invariance. The uniqueness result is complemented by an associated logarithmic stability estimate under suitable apriori assumptions. Also uniqueness under finitely many \emph{generic} measurements is discussed. Here the genericity is obtained through \emph{singularity theory} which might also be interesting in the context of hybrid inverse pro…
A sharp stability estimate for tensor tomography in non-positive curvature
2021
Funder: University of Cambridge
Stationary sets of the mean curvature flow with a forcing term
2020
We consider the flat flow approach for the mean curvature equation with forcing in an Euclidean space $\mathbb R^n$ of dimension at least 2. Our main results states that tangential balls in $\mathbb R^n$ under any flat flow with a bounded forcing term will experience fattening, which generalizes the result by Fusco, Julin and Morini from the planar case to higher dimensions. Then, as in the planar case, we are able to characterize stationary sets in $\mathbb R^n$ for a constant forcing term as finite unions of equisized balls with mutually positive distance.
Volume preserving mean curvature flows near strictly stable sets in flat torus
2021
In this paper we establish a new stability result for the smooth volume preserving mean curvature flow in flat torus $\mathbb T^n$ in low dimensions $n=3,4$. The result says roughly that if the initial set is near to a strictly stable set in $\mathbb T^n$ in $H^3$-sense, then the corresponding flow has infinite lifetime and converges exponentially fast to a translate of the strictly stable (critical) set in $W^{2,5}$-sense.
Nonlinear Liouville Problems in a Quarter Plane
2016
We answer affirmatively the open problem proposed by Cabr\'e and Tan in their paper "Positive solutions of nonlinear problems involving the square root of the Laplacian" (see Adv. Math. {\bf 224} (2010), no. 5, 2052-2093).
On some partial data Calderón type problems with mixed boundary conditions
2021
In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal Calderón type problems. We prove two main results on these type of problems: On the one hand, we derive simultaneous bulk and boundary Runge approximation results. Building on these, we deduce uniqueness for localized bulk and boundary potentials. On the other hand, we construct a family of CGO solutions associated with the corresponding equations. These allow us to deduce uniqueness results for arbitrary bounded, not necessarily localized bulk and boundary potentials. T…
Variational parabolic capacity
2015
We establish a variational parabolic capacity in a context of degenerate parabolic equations of $p$-Laplace type, and show that this capacity is equivalent to the nonlinear parabolic capacity. As an application, we estimate the capacities of several explicit sets.
On the Porosity of Free Boundaries in Degenerate Variational Inequalities
2000
Abstract In this note we consider a certain degenerate variational problem with constraint identically zero. The exact growth of the solution near the free boundary is established. A consequence of this is that the free boundary is porous and therefore its Hausdorff dimension is less than N and hence it is of Lebesgue measure zero.
Oscillation of Second-Order Neutral Differential Equations
2013
Author's version of an article in the journal: Funkcialaj Ekvacioj. Also available from the publisher at: http://www.math.kobe-u.ac.jp/~fe/ We study oscillatory behavior of a class of second-order neutral differential equations relating oscillation of these equations to existence of positive solutions to associated first-order functional differential inequalities. Our assumptions allow applications to differential equations with both delayed and advanced arguments, and not only. New theorems complement and improve a number of results reported in the literature. Two illustrative examples are provided.