Search results for "mathematical analysis"

showing 10 items of 2409 documents

Limiting Carleman weights and conformally transversally anisotropic manifolds

2020

We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, 3 3 -manifolds, and 4 4 -manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman weights, and show that there are only three basic such weights up to the action of the conformal group. In dimension three we show that if the manifold is not conformally flat, there could be one or two limiting Carleman weights. We also characterize the metrics that have more than one limiting Carleman weight. In dimension four we obtain a complete spectrum of examples according to the structure of the Weyl tensor. In particular, we construct unimodular Lie groups whose …

osittaisdifferentiaaliyhtälötComputer Science::Machine LearningApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysis35R30 53A30LimitingMathematics::Spectral TheoryComputer Science::Digital Libraries01 natural sciencesinversio-ongelmatdifferentiaaligeometria010101 applied mathematicsStatistics::Machine LearningMathematics - Analysis of PDEsFOS: MathematicsComputer Science::Mathematical Softwaremonistot0101 mathematicsAnisotropyAnalysis of PDEs (math.AP)MathematicsTransactions of the American Mathematical Society
researchProduct

The Calderón problem for the fractional Schrödinger equation with drift

2020

We investigate the Calder\'on problem for the fractional Schr\"odinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number of exterior measurements. In particular, in contrast to its local analogue, this nonlocal problem does \emph{not} enjoy a gauge invariance. The uniqueness result is complemented by an associated logarithmic stability estimate under suitable apriori assumptions. Also uniqueness under finitely many \emph{generic} measurements is discussed. Here the genericity is obtained through \emph{singularity theory} which might also be interesting in the context of hybrid inverse pro…

osittaisdifferentiaaliyhtälötLogarithmSingularity theoryApplied MathematicsContext (language use)Inverse probleminversio-ongelmatDomain (mathematical analysis)Schrödinger equationsymbols.namesakeMathematics - Analysis of PDEsBounded functionsymbolsApplied mathematicsUniquenessAnalysisMathematics
researchProduct

A sharp stability estimate for tensor tomography in non-positive curvature

2021

Funder: University of Cambridge

osittaisdifferentiaaliyhtälötMathematics - Differential GeometryGeodesicGeneral Mathematics010102 general mathematicsMathematical analysisBoundary (topology)Curvature01 natural sciencesinversio-ongelmatTensor field010101 applied mathematicsmath.DGMathematics - Analysis of PDEsDifferential Geometry (math.DG)Simply connected spaceFOS: MathematicsNon-positive curvatureTensor0101 mathematicsConvex functionComputingMilieux_MISCELLANEOUSmath.APMathematicsAnalysis of PDEs (math.AP)
researchProduct

Stationary sets of the mean curvature flow with a forcing term

2020

We consider the flat flow approach for the mean curvature equation with forcing in an Euclidean space $\mathbb R^n$ of dimension at least 2. Our main results states that tangential balls in $\mathbb R^n$ under any flat flow with a bounded forcing term will experience fattening, which generalizes the result by Fusco, Julin and Morini from the planar case to higher dimensions. Then, as in the planar case, we are able to characterize stationary sets in $\mathbb R^n$ for a constant forcing term as finite unions of equisized balls with mutually positive distance.

osittaisdifferentiaaliyhtälötMean curvature flowForcing (recursion theory)Mean curvatureEuclidean spaceApplied Mathematics010102 general mathematicsMathematical analysisstationary setscritical setsvariaatiolaskenta01 natural sciences35J93Term (time)010101 applied mathematicsMathematics - Analysis of PDEsFlow (mathematics)forced mean curvature flowBounded functionFOS: Mathematics0101 mathematicsConstant (mathematics)AnalysisAnalysis of PDEs (math.AP)MathematicsAdvances in Calculus of Variations
researchProduct

Volume preserving mean curvature flows near strictly stable sets in flat torus

2021

In this paper we establish a new stability result for the smooth volume preserving mean curvature flow in flat torus $\mathbb T^n$ in low dimensions $n=3,4$. The result says roughly that if the initial set is near to a strictly stable set in $\mathbb T^n$ in $H^3$-sense, then the corresponding flow has infinite lifetime and converges exponentially fast to a translate of the strictly stable (critical) set in $W^{2,5}$-sense.

osittaisdifferentiaaliyhtälötMean curvature53C44 (Primary) and 35K93 (Secondary)Applied Mathematics010102 general mathematicsMathematical analysisSense (electronics)Stability result01 natural sciences010101 applied mathematicsSet (abstract data type)differentiaaligeometriastrictly stable setsMathematics - Analysis of PDEsFlow (mathematics)Volume (thermodynamics)Independent setFOS: Mathematics0101 mathematicsFlat torusAnalysisMathematicsperiodic stabilityvolume preserving mean curvature flowAnalysis of PDEs (math.AP)
researchProduct

Nonlinear Liouville Problems in a Quarter Plane

2016

We answer affirmatively the open problem proposed by Cabr\'e and Tan in their paper "Positive solutions of nonlinear problems involving the square root of the Laplacian" (see Adv. Math. {\bf 224} (2010), no. 5, 2052-2093).

osittaisdifferentiaaliyhtälötPlane (geometry)General MathematicsOpen problemta111010102 general mathematicsMathematical analysis35B09 35B53 35J60Quarter (United States coin)01 natural sciencesNonlinear systemMathematics - Analysis of PDEsSquare root0103 physical sciencesFOS: Mathematicspartial differential equations010307 mathematical physics0101 mathematicsLaplace operatorAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

On some partial data Calderón type problems with mixed boundary conditions

2021

In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal Calderón type problems. We prove two main results on these type of problems: On the one hand, we derive simultaneous bulk and boundary Runge approximation results. Building on these, we deduce uniqueness for localized bulk and boundary potentials. On the other hand, we construct a family of CGO solutions associated with the corresponding equations. These allow us to deduce uniqueness results for arbitrary bounded, not necessarily localized bulk and boundary potentials. T…

osittaisdifferentiaaliyhtälötinverse problemsApplied Mathematics(fractional) Calderón problem010102 general mathematicsDegenerate energy levelsMathematical analysisBoundary (topology)Duality (optimization)Type (model theory)partial dataCarleman estimates01 natural sciencesinversio-ongelmatrunge approximationcomplex geometrical optics solutions010101 applied mathematicsBounded functionBoundary value problemUniqueness0101 mathematicsapproksimointiAnalysisMathematicsestimointiJournal of Differential Equations
researchProduct

Variational parabolic capacity

2015

We establish a variational parabolic capacity in a context of degenerate parabolic equations of $p$-Laplace type, and show that this capacity is equivalent to the nonlinear parabolic capacity. As an application, we estimate the capacities of several explicit sets.

p-parabolic equationcapacityApplied Mathematicsta111Mathematical analysisDegenerate energy levelsMathematics::Analysis of PDEsContext (language use)Parabolic cylinder functionType (model theory)Parabolic partial differential equationHeat capacityNonlinear systemdegenerate parabolic equationsnonlinear potential theoryDiscrete Mathematics and CombinatoricsAnalysisComputer Science::Information TheoryMathematicsDiscrete and Continuous Dynamical Systems
researchProduct

On the Porosity of Free Boundaries in Degenerate Variational Inequalities

2000

Abstract In this note we consider a certain degenerate variational problem with constraint identically zero. The exact growth of the solution near the free boundary is established. A consequence of this is that the free boundary is porous and therefore its Hausdorff dimension is less than N and hence it is of Lebesgue measure zero.

porosityLebesgue measureApplied MathematicsDegenerate energy levelsMathematical analysisZero (complex analysis)Boundary (topology)nonhomogeneous p-Laplace equationfree boundaryobstacle problemHausdorff dimensionVariational inequalityObstacle problemFree boundary problemAnalysisMathematicsJournal of Differential Equations
researchProduct

Oscillation of Second-Order Neutral Differential Equations

2013

Author's version of an article in the journal: Funkcialaj Ekvacioj. Also available from the publisher at: http://www.math.kobe-u.ac.jp/~fe/ We study oscillatory behavior of a class of second-order neutral differential equations relating oscillation of these equations to existence of positive solutions to associated first-order functional differential inequalities. Our assumptions allow applications to differential equations with both delayed and advanced arguments, and not only. New theorems complement and improve a number of results reported in the literature. Two illustrative examples are provided.

positive solutionsAlgebra and Number TheoryOscillationMathematical analysisdelayed argumentsoscillationcomparisonControl theoryOrder (group theory)VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Analyse: 411Geometry and Topologyadvanced argumentsNeutral differential equationsneutral differential equationsAnalysisMathematicsFunkcialaj Ekvacioj
researchProduct