Search results for "mathematical analysis"
showing 10 items of 2409 documents
New Invariant Domain Preserving Finite Volume Schemes for Compressible Flows
2021
We present new invariant domain preserving finite volume schemes for the compressible Euler and Navier–Stokes–Fourier systems. The schemes are entropy stable and preserve positivity of density and internal energy. More importantly, their convergence towards a strong solution of the limit system has been proved rigorously in [9, 11]. We will demonstrate their accuracy and robustness on a series of numerical experiments.
A Fixed Domain Approach in Shape Optimization Problems with Neumann Boundary Conditions
2008
Fixed domain methods have well-known advantages in the solution of variable domain problems, but are mainly applied in the case of Dirichlet boundary conditions. This paper examines a way to extend this class of methods to the more difficult case of Neumann boundary conditions.
An explicit unconditionally stable numerical solution of the advection problem in irrotational flow fields
2004
[1] A new methodology for the Eulerian numerical solution of the advection problem is proposed. The methodology is based on the conservation of both the zero- and the first-order spatial moments inside each element of the computational domain and leads to the solution of several small systems of ordinary differential equations. Since the systems are solved sequentially (one element after the other), the method can be classified as explicit. The proposed methodology has the following properties: (1) it guarantees local and global mass conservation, (2) it is unconditionally stable, and (3) it applies second-order approximation of the concentration and its fluxes inside each element. Limitati…
Champs de vecteurs analytiques commutants, en dimension 3 ou 4: existence de zeros communs
1992
One proves the existence of a common zero for any two ℝ-analytic commuting vector fields on a 4-dimensional manifold with not zero Euler characteristic. A local version of this result remains true on 3-manifolds.
A Stieltjes Approach to Static Hedges
2014
Static hedging of complicated payoff structures by standard instruments becomes increasingly popular in finance. The classical approach is developed for quite regular functions, while for less regular cases, generalized functions and approximation arguments are used. In this note, we discuss the regularity conditions in the classical decomposition formula due to P. Carr and D. Madan (in Jarrow ed, Volatility, pp. 417–427, Risk Publ., London, 1998) if the integrals in this formula are interpreted as Lebesgue integrals with respect to the Lebesgue measure. Furthermore, we show that if we replace these integrals by Lebesgue–Stieltjes integrals, the family of representable functions can be exte…
Gaussian plane and spherical means in separable Hilbert spaces
1982
On Taylor coefficients of entire functions integrable against exponential weights
2001
A New Family of Deformations of Darboux-Pöschl-Teller Potentials
2004
The aim of this Letter is to present a new family of integrable functional-difference deformations of the Schrodinger equation with Darboux–Poschl–Teller potentials. The related potentials are labeled by two integers m and n, and also depend on a deformation parameter h. When h→ 0 the classical Darboux–Poschl–Teller model is recovered.
A Method of Conversion of some Coefficient Inverse Parabolic Problems to a Unified Type of Integral-Differential Equation
2011
Coefficient inverse problems are reformulated to a unified integral differential equation. The presented method of conversion of the considered inverse problems to a unified Volterra integral-differential equation gives an opportunity to distribute the acquired results also to analogous inverse problems for non-linear parabolic equations of different types.