Search results for "matrix elements"

showing 10 items of 33 documents

Fascinating puzzle called double beta decay

2019

The question of whether neutrinos are Majorana or Dirac particles and what are their average masses remains one of the most fundamental problems in physics today. Observation of neutrinoless double beta decay (0νββ) would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. The inverse half-life for 0νββ-decay is given by the product of a phase space factor (PSF), a nuclear matrix element (NME), which both rely on theoretical description, and a function f containing the physics beyond the standard model. Recent calculations of PSF and NME will be reviewed together with comparison to other available results. These calculations serve the p…

PhysicsParticle physicsDirac (video compression format)Physics beyond the Standard ModelHigh Energy Physics::Phenomenologyneutriinotdouble beta decaynuclear matrix elementshiukkasfysiikkaMAJORANADouble beta decayPhase spaceMass spectrumHigh Energy Physics::ExperimentNeutrinoydinfysiikkaAbsolute scale
researchProduct

Solution of the Lindblad equation in Kraus representation

2006

The so-called Lindblad equation, a typical master equation describing the dissipative quantum dynamics, is shown to be solvable for finite-level systems in a compact form without resort to writing it down as a set of equations among matrix elements. The solution is then naturally given in an operator form, known as the Kraus representation. Following a few simple examples, the general applicability of the method is clarified.

PhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciLindblad equationFOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaThe so-called Lindblad equation a typical master equation describing the dissipative quantum dynamics is shown to be solvable for finite-level systems in a compact form without resort to writing it down as a set of equations among matrix elements. The solution is then naturally given in an operator form known as the Kraus representation. Following a few simple examples the general applicability of the method is clarified.Open quantum systemQuantum processMaster equationDissipative systemQuantum operationMethod of quantum characteristicsQuantum Physics (quant-ph)Quantum statistical mechanicsMathematical physics
researchProduct

The M4 transitions of isomeric states

2015

Tässä pro gradu -tutkielmassa tutkitaan isomeeristen tilojen magneettisten M4-gammasiirtymien redusoituja matriisielementtejä. Tutkittavat siirtymät ovat venyneitä M4-siirtymiä kaksoisbeetahajoamisten massa-alueilla A=85-115 ja A=135-143. Tutkielman tarkoituksena on verrata kokeellisia ydinmatriisielementtejä kvasihiukkasmatriisielementteihin ja MQPM-teorian avulla laskettuihin matriisielementteihin. Kokeelliset matriisielementi lasketaan kokeellisesti määritettyjen arvojen avulla ja kvasihiukkas- sekä MQPM-matriisielementit määritetään tietokoneohjelmien avulla. Kokeellisten ja kvasihiukkasmatriisielementtien välinen suhde osoittautui olevan noin 0,29 ja kokeellisten ja MQPM-matriisielemen…

QRPA theoryElectromagnetic transitionsBCS theoryMQPM theorysähkömagnetisminuclear matrix elementsM4 transition
researchProduct

Flavor physics in the quark sector

2010

218 páginas, 106 figuras, 89 tablas.-- arXiv:0907.5386v2.-- Report of the CKM workshop, Rome 9-13th Sep. 2008.-- et al.

QuarkParticle physicsKobayashi-Maskawa MatrixMesonField (physics)Rare Kaon DecaysHigh Energy Physics::LatticeFlavourGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix element01 natural sciencesDirect Cp-ViolationStandard ModelTo-Leading OrderHigh Energy Physics - Phenomenology (hep-ph)Chiral Perturbation-Theory/dk/atira/pure/subjectarea/asjc/31000103 physical sciences010306 general physicsFlavorParticle Physics - PhenomenologyPhysics010308 nuclear & particles physics12.15.Hh Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementsHigh Energy Physics::PhenomenologyELEMENTARY PARTICLE PHYSICSFísicahep-ph13.20.Eb Decays of K mesonsQuantum numberLarge Tan-BetaSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology13.20.He Decays of bottom mesonsB MESON[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Effective-Field-TheoryCP violationB-Meson DecaysUniversal Extra DimensionsHigh Energy Physics::ExperimentCP VIOLATIONRooted Staggered FermionsCharmed mesons (|C|>0 B=0)
researchProduct

Lattice-constrained parametrizations of form factors for semileptonic and rare radiative B decays

1997

We describe the form factors for B to rho lepton neutrino and B to K* gamma decays with just two parameters and the two form factors for B to pi lepton neutrino with a further two or three parameters. The parametrizations are consistent with heavy quark symmetry, kinematic constraints and lattice results, which we use to determine the parameters. In addition, we test versions of the parametrizations consistent (or not) with light-cone sum rule scaling relations at q^2=0.

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologyhep-latLattice QCD calculationFOS: Physical sciencesFísicaAtomic and Molecular Physics and OpticsSemileptonic and rare radiative decays of B mesonsHigh Energy Physics - LatticeDetermination of Cabibbo-Kobayashi-Maskawa matrix elementsLattice (order)Radiative transferHigh Energy Physics::ExperimentSum rule in quantum mechanicsNeutrinoScalingHeavy quark effective theoryTwo-formLepton
researchProduct

Measurement of the single-top-quark production cross section at CDF.

2008

We report a measurement of the single top quark production cross section in 2.2 ~fb-1 of p-pbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2 +0.7 -0.6(stat+sys) pb, extract the CKM matrix element value |V_{tb}|=0…

StandardsTop quarkParticle physicsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2Astrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Tellurium compoundsMatrix elementsCross section (physics)Colliding beam acceleratorsStandard deviations0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Sensitivity (control systems)010306 general physicsStandard models14.65.Ha 13.85Qk 12.15Hh 12.15.JiPhysicshep-ex010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixPhysicsStatisticsHigh Energy Physics::PhenomenologyOrder (ring theory)Collider Detector at FermilabCross sections_Parallel analysisProduction (computer science)High Energy Physics::ExperimentCollider Detector at FermilabNeural networksQuark productions
researchProduct

0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration

2015

We introduce a method for isospin restoration in the calculation of nuclear matrix elements (NMEs) for 0νββ and 2νββ decay within the framework of the microscopic interacting boson model (IBM-2). With this method, we calculate the NMEs for all processes of interest in 0νβ−β− and 2νβ−β− and in 0νβ+β+, 0νECβ+, R0νECEC, 2νβ+β+, 2νECβ+, and 2νECEC. With this method, the Fermi matrix elements for 2νββ vanish, and those for 0νββ are considerably reduced. peerReviewed

double beta decaynuclear matrix elements
researchProduct

Neutrino-nuclear responses for astro-neutrinos, single beta decays and double beta decays

2019

Neutrino–nuclear responses associated with astro-neutrinos, single beta decays and double beta decays are crucial in studies of neutrino properties of interest for astro-particle physics. The present report reviews briefly recent studies of the neutrino–nuclear responses from both experimental and theoretical points of view in order to obtain a consistent understanding of the many facets of the neutrino–nuclear responses. Subjects discussed in this review include (i) experimental studies of neutrino–nuclear responses by means of single beta decays, charge-exchange nuclear reactions, muon- photon- and neutrino–nuclear reactions, and nucleon-transfer reactions, (ii) implications of and discus…

double beta decaysPhysics::Instrumentation and Detectorssingle beta decaysastrofysiikkaHigh Energy Physics::PhenomenologyNuclear Theorymuon captureneutriinotneutrino-nucleus interactionsnuclear matrix elementsastro-neutrinosphoto-nuclear reactionsaxial-vector couplingsolar neutrinosHigh Energy Physics::Experimentcharge-exchange reactionsNuclear Experimentsupernova neutrinos
researchProduct

Spin-multipole nuclear matrix elements in the pn quasiparticle random-phase approximation: Implications for β and ββ half-lives

2017

Half-lives for 148 potentially measurable 2nd-, 3rd-, 4th-, 5th-, 6th-, and 7th-forbidden unique beta transitions are predicted. To achieve this, the ratio of the nuclear matrix elements (NMEs), calculated by the proton-neutron quasiparticle random-phase approximation (pnQRPA), MpnQRPA, and a two-quasiparticle (two-qp) model, Mqp, is studied and compared with earlier calculations for the allowed Gamow-Teller (GT) 1+ and first-forbidden spin-dipole (SD) 2− transitions. The present calculations are done using realistic single-particle model spaces and G-matrix based microscopic two-body interactions. In terms of the ratio k = MpnQRPA/Mqp the studied decays fall into two groups: for GROUP 1, w…

forbidden beta decaybeta decaynuclear matrix elementsproton-neutron quasiparticle random-phase approximation
researchProduct

Comparative Analysis of Nuclear Matrix Elements of 0νβ+β+ Decay and Muon Capture in 106Cd

2021

Comparative analyses of the nuclear matrix elements (NMEs) related to the 0νβ+β+ decay of 106Cd to the ground state of 106Pd and the ordinary muon capture (OMC) in 106Cd are performed. This is the first time the OMC NMEs are studied for a nucleus decaying via positron-emitting/electron-capture modes of double beta decay. All the present calculations are based on the proton-neutron quasiparticle random-phase approximation with large no-core single-particle bases and realistic two-nucleon interactions. The effect of the particle-particle interaction parameter gpp of pnQRPA on the NMEs is discussed. In the case of the OMC, the effect of different bound-muon wave functions is studied. peerRevie…

particle-particle interaction parameterMaterials Science (miscellaneous)quasiparticle random-phase approximationBiophysicsbound-muon wave functionGeneral Physics and Astronomynuclear matrix elementshiukkasfysiikkanuclear double beta decayHigh Energy Physics::ExperimentPhysical and Theoretical Chemistrynuclear muon captureydinfysiikkaMathematical Physics
researchProduct