Search results for "mcrA"
showing 3 items of 3 documents
Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters
2018
Small oxygen-stratified humic lakes of the boreal zone are important sources of methane to the atmosphere. Although stable isotope profiling has indicated that a substantial part of methane is already oxidized in the anaerobic water layers in these lakes, the contributions of aerobic and anaerobic methanotrophs in the process are unknown. We used next-generation sequencing of mcrA and 16S rRNA genes to characterize the microbial communities in the water columns of 2 boreal lakes in Finland, Lake Alinen-Mustajärvi and Lake Mekkojärvi, and complemented this with a shotgun metagenomic analysis from Alinen-Mustajärvi and an analysis of pmoA genes and 16S rRNA, mcrA, and pmoA transcripts from Me…
Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two…
2017
The role of anaerobic CH4 oxidation in controlling lake sediment CH4 emissions remains unclear. Therefore, we tested how relevant EAs (SO42−, NO3−, Fe3+, Mn4+, O2) affect CH4 production and oxidation in the sediments of two shallow boreal lakes. The changes induced to microbial communities by the addition of Fe3+ and Mn4+ were studied using next-generation sequencing targeting the 16S rRNA and methyl-coenzyme M reductase (mcrA) genes and mcrA transcripts. Putative anaerobic CH4-oxidizing archaea (ANME-2D) and bacteria (NC 10) were scarce (up to 3.4% and 0.5% of archaeal and bacterial 16S rRNA genes, respectively), likely due to the low environmental stability associated with shallow depths.…
Exploring the mechanisms by which reindeer droppings induce fen peat methane production
2021
Abstract Peatlands, especially fens, are known to emit methane. Reindeer (Rangifer tarandus) use mires mainly as spring and summer pastures. In this work we observed that adding reindeer droppings to fen peat increased the potential methane production by 40%. This became apparent when droppings originating from reindeer kept in pen or pasture in winter were added to methanogenic fen peat samples. The droppings introduced Methanobacteriaceae (Methanobrevibacter; > 90% of the mcrA MiSeq reads) to the peat, which was originally populated by Methanosarcinaceae, Methanosaetaceae, Methanoregulaceae, Methanobacteriaceae, Methanomassiliicoccaceae, Methanocellaceae and Methanomicrobiaceae. The origi…