Search results for "mean field"

showing 10 items of 191 documents

Superdeformation in the Doubly Magic NucleusC2040a20

2001

A rotational band with seven gamma -ray transitions between states with spin 2 (h) over bar and 16 (h) over bar has been observed in the doubly magic, self-conjugate nucleus Ca-40(20)20. The measured transition quadrupole moment of 1.80(-0.29)(+0.39)eb indicates a superdeformed shape with a deformation beta (2) = 0.59(-0.07)(+0.11). The features of this band are explained by cranked relativistic mean field calculations to arise from an 8-particle 8-hole excitation.

PhysicsSuperdeformationmedicine.anatomical_structureMean field theoryNuclear TheoryQuadrupolemedicineGeneral Physics and AstronomyHigh Energy Physics::ExperimentAtomic physicsNucleusExcitationPhysical Review Letters
researchProduct

A dynamical mean field theory for the study of surface diffusion constants

1997

We present a combined analytical and numerical approach based on the Mori projection operator formalism and Monte Carlo simulations to study surface diffusion within the lattice-gas model. In the present theory, the average jump rate and the susceptibility factor appearing are evaluated through Monte Carlo simulations, while the memory functions are approximated by the known results for a Langmuir gas model. This leads to a dynamical mean field theory (DMF) for collective diffusion, while approximate correlation effects beyond DMF are included for tracer diffusion. We apply our formalism to three very different strongly interacting systems and compare the results of the new approach with th…

PhysicsSurface diffusionLangmuirStatistical Mechanics (cond-mat.stat-mech)Monte Carlo methodFOS: Physical sciencesSurfaces and InterfacesCondensed Matter - Soft Condensed MatterCondensed Matter PhysicsCombined approachSurfaces Coatings and FilmsFormalism (philosophy of mathematics)Jump rateDynamical mean field theoryTRACERMaterials ChemistrySoft Condensed Matter (cond-mat.soft)Statistical physicsCondensed Matter - Statistical Mechanics
researchProduct

Dynamical mean field theory: an efficient method to study surface diffusion coefficients

1998

Abstract We test the accuracy of the dynamical mean field theory (DMF) developed recently for the collective and tracer diffusion coefficients D C and D T , respectively, by Monte Carlo simulations of two very strongly interacting model systems. The deviation of the DMF results from the true hydrodynamic diffusion coefficients is a measure of memory effects, which are not fully accounted for in DMF. In the cases studied here, DMF predicts the behavior of both D C and D T accurately, while the memory effects are found to be most pronounced at low temperatures, and at high coverages and stronger interactions. Nevertheless, the computational cost of DMF is just a fraction of what is needed for…

PhysicsSurface diffusionMonte Carlo methodThermodynamicsSurfaces and InterfacesCondensed Matter PhysicsMeasure (mathematics)Surfaces Coatings and FilmsDynamical mean field theoryTRACERMaterials ChemistryStatistical physicsLimit (mathematics)Direct evaluationDiffusion (business)Surface Science
researchProduct

Notes on the Electroelastic Interaction in Joint Hamiltonian and Stochastic Treatment of Polarization Response

2008

Conventional Landau theory for ferroelectric phase instability is extended by entities accounting for the violation of thermodynamic equilibrium and the impact of thermal fluctuations. The physical content concerns Ginzburg-Landau type model Hamiltonians assigned to the mean field interaction of macroscopically small and microscopically large lattice cells affected by thermal fluctuations. A special topic derived in a systematic way is long range electroelastic interaction formally given by selfconsistent solution of the polarization and strain fields. Test solution for inhomogeneous strain in a slab is presented within the framework of lattice cell picture.

PhysicsThermodynamic equilibriumThermal fluctuationsCondensed Matter PhysicsPolarization (waves)Landau theoryElectronic Optical and Magnetic Materialssymbols.namesakeClassical mechanicsMean field theoryQuantum mechanicsLattice (order)symbolsGinzburg–Landau theoryHamiltonian (quantum mechanics)Ferroelectrics
researchProduct

Shell structure in mixed3He−4Hedroplets

2004

Due to the immiscibility of ${}^{3}\mathrm{He}$ into ${}^{4}\mathrm{He}$ at very low temperatures, mixed helium droplets consist of a core of ${}^{4}\mathrm{He}$ atoms coated by a ${}^{3}\mathrm{He}$ layer whose thickness depends on the number of atoms of each isotope. When these numbers are such that the centrifugal kinetic energy of the ${}^{3}\mathrm{He}$ atoms is small and can be considered as a perturbation to the mean-field energy, a novel shell structure arises, with magic numbers different from these of pure ${}^{3}\mathrm{He}$ droplets. If the outermost shell is not completely filled, the valence atoms align their spins up to the maximum value allowed by the Pauli principle.

PhysicsValence (chemistry)Spinschemistry.chemical_elementKinetic energyAtomic and Molecular Physics and Opticssymbols.namesakeHelium-4Pauli exclusion principlechemistryMean field theoryHelium-3Physics::Atomic and Molecular ClusterssymbolsPhysics::Atomic PhysicsAtomic physicsHeliumPhysical Review A
researchProduct

A lumped model for a seismic source

1993

A lumped mechanical model is proposed and solved. This model is dynamically equivalent, in the mean field approximation, to a faulted lithosphere. The transition from the continuous system (modelled according to W. H. Prescott and A. Nur) to the lumped one, has been made by preserving all the relevant features exhibited by the continuous system. In particular the coupling between different components of the stress and strain tensors is suitably taken into account. The dynamics of the lumped system depends on six control parameters fixed by the physical properties of the continuous system. Three of the control parameters are dimensionless and describe: the seismic wave quality factor of the…

Physicsbusiness.industryStress–strain curveMathematical analysisGeneral MedicineStructural engineeringKinematicsSeismic waveSeismogenic layerRigidity (electromagnetism)Mean field theoryLithospherebusinessDimensionless quantityProceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences
researchProduct

Dynamics of mean-field spin models from basic results in abstract differential equations

1992

The infinite-volume limit of the dynamics of (generalized) mean-field spin models is obtained through a direct analysis of the equations of motion, in a large class of representations of the spin algebra. The resulting dynamics fits into a general framework for systems with long-range interaction: variables at infinity appear in the time evolution of local variables and spontaneous symmetry breaking with an energy gap follows from this mechanism. The independence of the construction of the approximation scheme in finite volume is proven. © 1992 Plenum Publishing Corporation.

Physicsdifferential equations in C* and von Neumann algebraFinite volume methodPartial differential equationMathematical modelDifferential equationSpontaneous symmetry breakingEquations of motionStatistical and Nonlinear PhysicsMean field theorySymmetry breakingSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematical physicsJournal of Statistical Physics
researchProduct

Role of Single-Particle Energies in Microscopic Interacting Boson Model Double Beta Decay Calculations

2021

Single-particle level energies form a significant input in nuclear physics calculations where single-particle degrees of freedom are taken into account, including microscopic interacting boson model investigations. The single-particle energies may be treated as input parameters that are fitted to reach an optimal fit to the data. Alternatively, they can be calculated using a mean field potential, or they can be extracted from available experimental data, as is done in the current study. The role of single-particle level energies in the microscopic interacting boson model calculations is discussed with special emphasis on recent double beta decay calculations.

Physicslcsh:QC793-793.5single-particle energieslcsh:Elementary particle physicsDegrees of freedom (physics and chemistry)General Physics and Astronomyhiukkasfysiikkaneutrinoless double beta decayNuclear physicsMean field theorymicroscopic interacting boson modelDouble beta decayParticleInteracting boson modelydinfysiikka
researchProduct

Mixing of Two-Quasiparticle Configurations

2007

In this chapter we discuss configuration mixing of two-quasiparticle states. It is caused by the residual interaction remaining beyond the quasiparticle mean field defined in Chap. 13. We derive the equations of motion by the EOM method developed in Sect. 11.1. To accomplish this we need to express the residual Hamiltonian in terms of quasiparticles.

Physicssymbols.namesakeMean field theoryCondensed Matter::SuperconductivityQuantum mechanicssymbolsQuasiparticleEquations of motionCondensed Matter::Strongly Correlated ElectronsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectHamiltonian (quantum mechanics)Residual
researchProduct

Mean-Field Calculation Based on Proton-Neutron Mixed Energy Density Functionals

2015

We have performed calculations based on the Skyrme energy density functional (EDF) that includes arbitrary mixing between protons and neutrons. In this framework, single-particle states are generalized as mixtures of proton and neutron components. The model assumes that the Skyrme EDF is invariant under the rotation in isospin space and the Coulomb force is the only source of the isospin symmetry breaking. To control the isospin of the system, we employ the isocranking method, which is analogous to the standard cranking approach used for describing high-spin states. Here, we present results of the isocranking calculations performed for the isobaric analog states in A = 40 and A = 54 nuclei.

Physicsta114Proton010308 nuclear & particles physicsNuclear TheoryInvariant (physics)01 natural sciencesenergy density functionalsCoulomb's lawNuclear physicssymbols.namesakeMean field theoryproton-neutron mixingisobaric analog statesQuantum electrodynamicsIsospin0103 physical sciencessymbolsIsobaric processNeutronSymmetry breakingNuclear Experiment010306 general physicsProceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014)
researchProduct