Search results for "mean-field"
showing 10 items of 26 documents
Regularized pseudopotential for mean-field calculations
2019
We present preliminary results obtained with a finite-range two-body pseudopotential complemented with zero-range spin-orbit and density-dependent terms. After discussing the penalty function used to adjust parameters, we discuss predictions for binding energies of spherical nuclei calculated at the mean-field level, and we compare them with those obtained using the standard Gogny D1S finite-range effective interaction.
Empirical measures and Vlasov hierarchies
2013
The present note reviews some aspects of the mean field limit for Vlasov type equations with Lipschitz continuous interaction kernel. We discuss in particular the connection between the approach involving the N-particle empirical measure and the formulation based on the BBGKY hierarchy. This leads to a more direct proof of the quantitative estimates on the propagation of chaos obtained on a more general class of interacting systems in [S.Mischler, C. Mouhot, B. Wennberg, arXiv:1101.4727]. Our main result is a stability estimate on the BBGKY hierarchy uniform in the number of particles, which implies a stability estimate in the sense of the Monge-Kantorovich distance with exponent 1 on the i…
Competing species system as a qualitative model of radiation therapy
2016
To examine complex features of tumor dynamics we analyze a competing-species lattice model that takes into account the competition for nutrients or space as well as interaction with therapeutic factors such as drugs or radiation. Our model might be interpreted as a certain prey–predator system having three trophic layers: (i) the basal species that might be interpreted as nutrients; (ii) normal and tumor cells that consume nutrients, and (iii) therapeutic factors that might kill either nutrient, normal or tumor cells. Using a wide spectrum of parameters we examined survival of our species and tried to identify the corresponding dynamical regimes. It was found that the radiotherapy influence…
Bootstrap Technique to Study Correlation Between Neutron Skin Thickness and the Slope of Symmetry Energy in Atomic Nuclei
2017
We present a new statistical tool based on random sampling to assess the confidence interval of Pearson's and Spearman's correlation coefficients. These estimators are then used to quantify the statistical correlations among the neutron skin thickness of atomic nuclei and the slope of the symmetry energy in the infinite nuclear medium.
Charge radii of neon isotopes across the sd neutron shell
2011
We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable Ne-20, based on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical detection based on optical pumping and state-selective collisional ionization, which was complemented by an accurate determination of the beam kinetic energy. The new results provide information on the structural changes in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and halo candidate Ne-17 up to the…
Solution of universal nonrelativistic nuclear DFT equations in the Cartesian deformed harmonic-oscillator basis. (IX) HFODD (v3.06h) : a new version …
2021
We describe the new version (v3.06h) of the code HFODD that solves the universal nonrelativistic nuclear DFT Hartree-Fock or Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we implemented the following new features: (i) zero-range three- and four-body central terms, (ii) zero-range three-body gradient terms, (iii) zero-range tensor terms, (iv) zero-range isospin-breaking terms, (v) finite-range higher-order regularized terms, (vi) finite-range separable terms, (vii) zero-range two-body pairing terms, (viii) multi-quasiparticle blocking, (ix) Pfaffian overlaps, (x) particle-number and parity symmetry restoration, (xi) axializatio…
From Continuous to Discontinuous Transitions in Social Diffusion
2018
Models of social diffusion reflect processes of how new products, ideas or behaviors are adopted in a population. These models typically lead to a continuous or a discontinuous phase transition of the number of adopters as a function of a control parameter. We explore a simple model of social adoption where the agents can be in two states, either adopters or non-adopters, and can switch between these two states interacting with other agents through a network. The probability of an agent to switch from non-adopter to adopter depends on the number of adopters in her network neighborhood, the adoption threshold $T$ and the adoption coefficient $a$, two parameters defining a Hill function. In c…
Spurious finite-size instabilities in nuclear energy density functionals: Spin channel
2015
Background: It has been recently shown that some Skyrme functionals can lead to nonconverging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. Purpose: We show that the finite-size instabilities not only affect the ground-state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. Method: We perform systematic fully-self consistent random phase approximation (RPA) calculations in spherical doubly magic nuclei. We employ…
Mean-Field Game Modeling the Bandwagon Effect with Activation Costs
2015
This paper provides a mean-field game theoretic model of the bandwagon effect in social networks. This effect can be observed whenever individuals tend to align their own opinions to a mainstream opinion. The contribution is threefold. First, we describe the opinion propagation as a mean-field game with local interactions. Second, we establish mean-field equilibrium strategies in the case where the mainstream opinion is constant. Such strategies are shown to have a threshold structure. Third, we extend the use of threshold strategies to the case of time-varying mainstream opinion and study the evolution of the macroscopic system.
A many-body approach to transport in quantum systems : From the transient regime to the stationary state
2022
We review one of the most versatile theoretical approaches to the study of time-dependent correlated quantum transport in nano-systems: the non-equilibrium Green's function (NEGF) formalism. Within this formalism, one can treat, on the same footing, inter-particle interactions, external drives and/or perturbations, and coupling to baths with a (piece-wise) continuum set of degrees of freedom. After a historical overview on the theory of transport in quantum systems, we present a modern introduction of the NEGF approach to quantum transport. We discuss the inclusion of inter-particle interactions using diagrammatic techniques, and the use of the so-called embedding and inbedding techniques w…