Search results for "membrane"

showing 7 items of 4477 documents

In vitro studies on the activation of the hepatitis C virus NS3 proteinase by the NS4A cofactor.

1996

AbstractProteolytic processing of the nonstructural proteins of the hepatitis C virus (HCV) is mediated by two viral proteinases: the NS2-3 proteinase cleaving at the NS2/3 junction and the NS3 serine-type proteinase responsible for processing at the NS3/4A, NS4A/B, NS4B/5A, and NS5A/B sites. Activity of the NS3 proteinase is modulated by NS4A. In the absence of this cofactor processing at the NS3-dependent sites does not occur or, in the case of the NS5A/B junction, is poor but increased when NS4A is present. Although recent studies demonstrated that proteinase activation requires direct interaction between NS3 and NS4A, the mechanism by which NS4A exerts the activation function is not kno…

virusesMolecular Sequence DataHepacivirusBiologyViral Nonstructural ProteinsCell LineEnzyme activatorProteinase 3VirologyCricetinaeMicrosomesAnimalsHumansAmino Acid SequenceBinding siteNS5APeptide sequenceSequence Deletionchemistry.chemical_classificationNS3Binding SitesBase Sequencevirus diseasesIntracellular Membranesbiochemical phenomena metabolism and nutritionMolecular biologyIn vitrodigestive system diseasesAmino acidEnzyme ActivationBiochemistrychemistryDNA ViralPeptidesHeLa CellsVirology
researchProduct

SARS-CoV-2 envelope protein topology in eukaryotic membranes

2020

Coronavirus E protein is a small membrane protein found in the virus envelope. Different coronavirus E proteins share striking biochemical and functional similarities, but sequence conservation is limited. In this report, we studied the E protein topology from the new SARS-CoV-2 virus both in microsomal membranes and in mammalian cells. Experimental data reveal that E protein is a single-spanning membrane protein with the N-terminus being translocated across the membrane, while the C-terminus is exposed to the cytoplasmic side (Nt lum /Ct cyt ). The defined membrane protein topology of SARS-CoV-2 E protein may provide a useful framework to understand its interaction with other viral and ho…

virusescoronavirusmedicine.disease_causeViral Envelope Proteinsmembrane insertionPeptide sequencelcsh:QH301-705.5Topology (chemistry)PhylogenyCoronavirusMutationChemistryGeneral NeuroscienceProteïnes de membranaEukaryotavirus diseases129Recombinant ProteinsCell biologysars-cov-2MembraneProtein topologyCoronavirus InfectionsResearch Article1001topologyPneumonia ViralImmunologySequence alignmentBiologyTopologiaVirusGeneral Biochemistry Genetics and Molecular BiologyBetacoronavirusCoronavirus Envelope ProteinsViral envelopeMicrosomesmedicineHumansAmino Acid SequencePandemicsResearchCell MembraneCOVID-1915envelope proteinMembrane proteinlcsh:Biology (General)CytoplasmMutationSequence AlignmentOpen Biology
researchProduct

Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs)

2008

BACKGROUND: Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16), the primary etiologic agent for development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence and infection studies we show in contra…

viruseslcsh:MedicinePlatelet Membrane GlycoproteinsTetraspanin 24CaveolaeKidneyEndocytosisClathrinVirusCell LineMembrane MicrodomainsViral life cycleTetraspaninAntigens CDCaveolaeInfectious Diseases/Viral InfectionsCaveolinInfectious Diseases/Sexually Transmitted DiseasesHumanslcsh:ScienceHuman papillomavirus 16MultidisciplinarybiologyTetraspanin 30lcsh:RVirionMembrane Proteinsvirus diseasesCell BiologyVirus InternalizationVirology/Host Invasion and Cell EntryVirologyClathrinEndocytosisCell biologyCell culturebiology.proteinFemalelcsh:QMicrobiology/Cellular Microbiology and PathogenesisHeLa CellsResearch ArticlePLoS ONE
researchProduct

Tumor targeting of baculovirus displaying a lymphatic homing peptide.

2008

Background Tumor-associated cells and vasculature express attractive molecular markers for site-specific vector targeting. To attain tumor-selective tropism, we recently developed a baculovirus vector displaying the lymphatic homing peptide LyP-1, originally identified by ex vivo/in vivo screening of phage display libraries, on the viral envelope by fusion to the transmembrane anchor of vesicular stomatitis virus G-protein. Methods In the present study, we explored the specificity and kinetics of viral binding and internalization as well as in vivo tumor homing of the LyP-1 displaying virus to elucidate the applicability of baculovirus for targeted therapies. Results We demonstrated that th…

virusesmedia_common.quotation_subjectGenetic VectorsMice NudeBiologyPeptides CyclicVirus03 medical and health sciencesTransduction (genetics)Mice0302 clinical medicineViral envelopeViral Envelope ProteinsIn vivoTransduction GeneticCell Line TumorNeoplasmsDrug DiscoveryGeneticsAnimalsHumansTransgenesInternalizationMolecular BiologyGenetics (clinical)030304 developmental biologymedia_commonLymphatic Vessels0303 health sciencesBinding SitesMembrane GlycoproteinsGene Transfer TechniquesGenetic Therapybiology.organism_classificationMolecular biology3. Good healthCell biologyVesicular stomatitis virus030220 oncology & carcinogenesisMolecular MedicineBaculoviridaeEx vivoHoming (hematopoietic)The journal of gene medicine
researchProduct

REVERSE ELECTRODIALYSIS FOR POWER PRODUCTION FROM OILFIELD WASTEWATERS

2022

Produced waters (PWs) are wastewaters generated by crude-oil extraction processes. They can present very different characteristics depending on the field location and production process. Dispersed oil, dissolved organics and solid particles are usually the main components. Moreover, PWs can contain a very high quantity of dissolved salts 1, with a total dissolved solid (TDS) concentration up to 300 g/L. Each barrel of extracted oil requires the simultaneous extraction of 3 barrels of produced water2 on average. PWs are often discharged into the sea, or sent in evaporation ponds thus leading to a dramatic environment impact3. Reinjection in the extraction well is currently the most common an…

wastewaters valorization produced waters energy production salinity gradient power reverse electrodialysis membrane technology
researchProduct

The AQP2 mutation V71M causesnephrogenic diabetes insipidus in humans but does not impair the function of a bacterial homolog

2015

Graphical abstract

wt wild-typeGpA glycophorin AHM half-membrane-spanningurogenital systemQH301-705.5AquaporinNephrogenic diabetes insipidusAQP ER endoplasmic reticulumGlpF glycerol facilitatorActivityProtein oligomerizationResearch articleNDI nephrogenic diabetes insipidusAVP arginine vasopressinGlpF500 Natural sciences and mathematicsAQP aquaporin500 NaturwissenschaftenBiology (General)AVPR2 V2 receptorComputingMethodologies_COMPUTERGRAPHICSTM transmembraneFEBS Open Bio
researchProduct

An experimental model for mimicking biological systems: the Belousov-Zhabotinsky reaction in Lipid membranes

2006

{LIPID} {BILAYERS}Belousov-Zhabotinsky reaction; Biomimetic systems; Cell membranes; Lipid bilayers; Morphogenesis; Self-organizing systemsEcologyLipid bilayersChemistryExperimental modelBelousov-Zhabotinsky reaction{BELOUSOV-ZHABOTINSKY} {REACTION}; Biomimetic systems; Cell membranes; {LIPID} {BILAYERS}; morphogenesis; Self-organizing systemsSelf-organizing systemsBiomimetic systemsCell membranesMembraneBelousov–Zhabotinsky reactionBiophysicsMorphogenesis{BELOUSOV-ZHABOTINSKY} {REACTION}Lipid bilayerEcology Evolution Behavior and Systematics
researchProduct