Search results for "memetic"
showing 10 items of 47 documents
Towards Multilevel Ant Colony Optimisation for the Euclidean Symmetric Traveling Salesman Problem
2015
Ant Colony Optimization ACO metaheuristic is one of the best known examples of swarm intelligence systems in which researchers study the foraging behavior of bees, ants and other social insects in order to solve combinatorial optimization problems. In this paper, a multilevel Ant Colony Optimization MLV-ACO for solving the traveling salesman problem is proposed, by using a multilevel process operating in a coarse-to-fine strategy. This strategy involves recursive coarsening to create a hierarchy of increasingly smaller and coarser versions of the original problem. The heart of the approach is grouping the variables that are part of the problem into clusters, which is repeated until the size…
A Primer on Memetic Algorithms
2012
Memetic Algorithms (MAs) are population-based metaheuristics composed of an evolutionary framework and a set of local search algorithms which are activated within the generation cycle of the external framework, see [376]. The earliest MA implementation has been given in [621] in the context of the Travelling Salesman Problem (TSP) while an early systematic definition has been presented in [615]. The concept of meme is borrowed from philosophy and is intended as the unit of cultural transmission. In other words, complex ideas can be decomposed into memes which propagate andmutate within a population.Culture, in this way, constantly undergoes evolution and tends towards progressive improvemen…
A Memetic Island Model for Discrete Tomography Reconstruction
2011
Soft computing is a term indicating a coalition of methodologies, and its basic dogma is that, in general, better results can be obtained through the use of constituent methodologies in combination, rather than in a stand alone mode. Evolutionary computing belongs to this coalition, and thus memetic algorithms. Here, we present a combination of several instances of a recently proposed memetic algorithm for discrete tomography reconstruction, based on the island model parallel implementation. The combination is motivated by the fact that, even though the results of the recently proposed approach are finally better and more robust compared to other approaches, we advised that its major drawba…
A Memetic Algorithm for Binary Image Reconstruction
2008
This paper deals with a memetic algorithm for the reconstruction of binary images, by using their projections along four directions. The algorithm generates by network flows a set of initial images according to two of the input projections and lets them evolve toward a solution that can be optimal or close to the optimum. Switch and compactness operators improve the quality of the reconstructed images which belong to a given generation, while the selection of the best image addresses the evolution to an optimal output.
The metaphorical species: Evolution, adaptation and speciation of metaphors
2015
Studying cartoons about the economic crisis and focusing on a pair of scissors as a symbol, I prove how they first turn into unambiguous metaphor for the economic crisis and then experience an evolution in order to adapt to new communication contexts. Along these processes, they undergo more complex changes such as coadaptation and speciation. This has allowed for the scissors meme as a symbol of economic cutbacks to permeate society, and for its metaphorical use to occupy many disparate communication scenarios, unlike other symbolic elements that were also used, but turned out to be less cognitively efficient and therefore offered fewer evolutionary possibilities.
Memetic algorithms and memetic computing optimization: A literature review
2012
Abstract Memetic computing is a subject in computer science which considers complex structures such as the combination of simple agents and memes, whose evolutionary interactions lead to intelligent complexes capable of problem-solving. The founding cornerstone of this subject has been the concept of memetic algorithms, that is a class of optimization algorithms whose structure is characterized by an evolutionary framework and a list of local search components. This article presents a broad literature review on this subject focused on optimization problems. Several classes of optimization problems, such as discrete, continuous, constrained, multi-objective and characterized by uncertainties…
Multi-objective memetic optimization for the bi-objective obnoxious p -median problem
2018
Abstract Location problems have been studied extensively in the optimization literature, the p-median being probably one of the most tackled models. The obnoxious p-median is an interesting variant that appears in the context of hazardous location. The aim of this paper is to formally introduce a bi-objective optimization model for this problem, in which a solution consists of a set of p locations, and two conflicting objectives arise. On the one hand, the sum of the minimum distance between each client and their nearest open facility and, on the other hand, the dispersion among facilities. Both objective values should be kept as large as possible for a convenient location of dangerous faci…
Modelling the Effects of Internal Textures on Symmetry Detection Using Fuzzy Operators
2009
Symmetry is a crucial dimension which aids the visual system, human as well as artificial, to organize its environment and to recognize forms and objects. In humans, detection of symmetry, especially bilateral and rotational, is considered to be a primary factor for discovering and interacting with the surrounding environment. Rotational symmetry detecting can be affected by less-known factors, such as the stimulus internal texture. This paper explores how fuzzy operators can be usefully employed in modeling the effects of the internal texture on symmetry detection. To this aim, we selected two symmetry detection algorithms, based on different computational models, and compared their output…
Generic heuristics on GPU to superpixel segmentation and application to optical flow estimation
2020
Finding clusters in point clouds and matching graphs to graphs are recurrent tasks in computer science domain, data analysis, image processing, that are most often modeled as NP-hard optimization problems. With the development and accessibility of cheap multiprocessors, acceleration of the heuristic procedures for these tasks becomes possible and necessary. We propose parallel implantation on GPU (graphics processing unit) system for some generic algorithms applied here to image superpixel segmentation and image optical flow problem. The aim is to provide generic algorithms based on standard decentralized data structures to be easy to improve and customized on many optimization problems and…
Lower and upper bounds for the mixed capacitated arc routing problem
2006
This paper presents a linear formulation, valid inequalities, and a lower bounding procedure for the mixed capacitated arc routing problem (MCARP). Moreover, three constructive heuristics and a memetic algorithm are described. Lower and upper bounds have been compared on two sets of randomly generated instances. Computational results show that the average gaps between lower and upper bounds are 0.51% and 0.33%, respectively.