Search results for "mesoporous material"

showing 10 items of 262 documents

Conductive films of ordered nanowire arrays

2004

peer-reviewed High-density, ordered arrays of germanium nanowires have been synthesised within the pores of mesoporous thin films (MTFs) and anodized aluminium oxide (AAO) matrices using a supercritical fluid solution-phase inclusion technique. Conductive atomic force microscopy (C-AFM) was utilised to study the electrical properties of the nanowires within these arrays. Nearly all of the semiconductor nanowires contained within the AAO substrates were found to be conducting. Additionally, each individual nanowire within the substrate possessed similar electrical properties demonstrating that the nanowires are continuous and reproducible within each pore. C-AFM was also able to probe the co…

Materials scienceAnodizingbusiness.industryNanowirechemistry.chemical_elementNanotechnologyGermaniumGeneral ChemistryConductive atomic force microscopySubstrate (electronics)MTFsgermaniumSemiconductorchemistrynanowiresMaterials ChemistryThin filmMesoporous materialbusiness
researchProduct

Mesosynthesis of ZnO-SiO(2) porous nanocomposites with low-defect ZnO nanometric domains.

2011

Silica-based ZnO-MCM-41 mesoporous nanocomposites with high Zn content (5≤Si/Zn≤50) have been synthesized by a one-pot surfactant-assisted procedure from aqueous solution using a cationic surfactant (CTMABr = cetyltrimethylammonium bromide) as structure-directing agent, and starting from molecular atrane complexes as inorganic hydrolytic precursors. This preparative technique allows optimization of the dispersion of the ZnO nanodomains in the silica walls. The mesoporous nature of the final materials is confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and N(2) adsorption-desorption isotherms. The ZnO-MCM-41 materials show unimodal pore size distributions without …

Materials scienceAqueous solutionPhotoluminescenceNanocompositeMechanical EngineeringBioengineeringGeneral ChemistryCrystallographychemistry.chemical_compoundChemical engineeringX-ray photoelectron spectroscopyAtranechemistryMechanics of MaterialsTransmission electron microscopyGeneral Materials ScienceElectrical and Electronic EngineeringSpectroscopyMesoporous materialNanotechnology
researchProduct

Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

2017

Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction …

Materials scienceBiocompatibilityBioadhesiveQuímica organometàl·licaNanoparticleAdministration OralNanotechnology02 engineering and technologySurface engineering010402 general chemistry01 natural sciencesFerric CompoundsArticleChitosanchemistry.chemical_compoundHumansChitosanMultidisciplinaryNanotecnologia021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesDrug LiberationKineticsLysergic Acid DiethylamideEnterocyteschemistryDrug deliveryNanoparticlesNanocarriersCaco-2 Cells0210 nano-technologyMesoporous material
researchProduct

MCM-41-CdS nanoparticle composite material: Preparation and characterization

2010

The preparation and characterization of a hierarchical material constituted by a mesoporous silica MCM-41 whose mesochannels contain CdS nanoparticles capped with both bis(2-ethylhexyl) amine and bis(2-ethylhexyl) sodium sulfosuccinate is reported. MCM-41 powder was synthesized by using the LCT methodology. CdS nanoparticles were obtained within the inversed micelle core of a water/ AOT/n-heptane microemulsion. Nanoparticles growth was followed by means of UV–Vis spectroscopy and was inhibited by BEA addition. The CdS-capped nanoparticles were separated by centrifugation, washed with water and ethanol and finally dispersed in n-heptane. The insertion of CdS nanoparticles into MCM-41 mesocha…

Materials scienceCdS nanoparticlesAnalytical chemistryMesoporouNanoparticleGeneral ChemistryMesoporous silicaMCM-41Condensed Matter PhysicsMicelleMCM-41Chemical engineeringMechanics of MaterialsAttenuated total reflectionGeneral Materials ScienceDiffuse reflectionHierarchical structureMesoporous materialHigh-resolution transmission electron microscopyMicroporous and Mesoporous Materials
researchProduct

The Synthesis of Spherical Mesoporous Molecular Sieves MCM-48 with Heteroatoms Incorporated into the Silica Framework

1999

Materials scienceChemical engineeringMechanics of MaterialsMechanical EngineeringHeteroatomGeneral Materials ScienceMolecular sieveMesoporous materialAdvanced Materials
researchProduct

Low-Cost Synthesis of Bimodal Mesoporous Silica-Based Materials by Pseudomorphic Transformation.

2015

Nanoparticulate bimodal porous silica-based materials have been prepared through a surfactant-assisted procedure by using a simple template and starting from inexpensive sodium silicate as silicon source. Different procedural variables, such as pH or the nature and concentration of the surfactant, have been explored to optimize the preparative protocol, which allows, in turn, improved understanding of the formation process. The final bulk materials (called UVM-10 or M-UVM-10) are formed by pseudomorphic transformation of fresh silica-based xerogels under mild basic conditions. The UVM-10 architecture is constructed from small mesoporous nanoparticles, the aggregation of which generates a di…

Materials scienceChromatographySiliconNanoparticlechemistry.chemical_elementSodium silicateGeneral ChemistryMesoporous silicaMicellechemistry.chemical_compoundChemical engineeringchemistryParticle sizeMesoporous materialPorosityChemPlusChem
researchProduct

Optimization of MCM-41 type silica nanoparticles for biological applications: Control of size and absence of aggregation and cell cytotoxicity

2015

Abstract Mesoporous silica nanoparticles were synthesized at high pH using CTAB as a template and TEOS as a silica precursor. It was shown that varying the NaOH concentration between 5 and 27.5 mM allows the size, pore and silica structure of mesoporous nanoparticles to be precisely tuned. In particular, monodisperse nanoparticles with the MCM-41 structure with size ranging from 90 nm to 450 nm were obtained by increasing the NaOH concentration from 12.5 to 22.5 mM. It thus demonstrates that NaOH concentration must range between 12.5 and 15 mM in order to prepare MCM-41 silica nanoparticles with optimal size for nanovectorization. We also found that under usual conditions the aggregation of…

Materials scienceDispersityExtraction (chemistry)NanoparticleMesoporous silicaCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuspension (chemistry)symbols.namesakeChemical engineeringMCM-41Materials ChemistryCeramics and CompositessymbolsOrganic chemistryRaman spectroscopyMesoporous materialJournal of Non-Crystalline Solids
researchProduct

Enhanced manganese content in Mn-MCM-41 mesoporous silicas

2005

The use of triethanolamine containing complexes of Si and Mn as hydrolytic precursors allows the synthesis of doped mesoporous silicas in which the Mn content can be modulated up to reach a minimum value of the Si/Mn molar ratio of 3. This limit value corresponds to a Mn relative content significantly higher than those reported to date for similar materials (Si/Mn = 6). According to XRD, TEM and porosity data, the mesoporous nature typical of the MCM-41 silicas is retained even for the samples having the highest Mn content.

Materials scienceDopingGeneral Physics and Astronomychemistry.chemical_elementMineralogyManganeseHydrolysisTransition metalMCM-41chemistryTriethanolaminemedicinePorosityMesoporous materialmedicine.drugNuclear chemistryJournal de Physique IV (Proceedings)
researchProduct

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

2019

The design of metal–organic frameworks (MOFs) incorporating electroactive guest molecules in the pores has become a subject of great interest in order to obtain additional electrical functionalities within the framework while maintaining porosity. Understanding the charge-transfer (CT) process between the framework and the guest molecules is a crucial step towards the design of new electroactive MOFs. Herein, we present the encapsulation of fullerenes (C60) in a mesoporous tetrathiafulvalene (TTF)-based MOF. The CT process between the electron-acceptor C60 guest and the electron-donor TTF ligand is studied in detail by means of different spectroscopic techniques and density functional theor…

Materials scienceFullerenemetal–organic frameworks (MOFs)General Physics and Astronomy010402 general chemistrylcsh:Chemical technology01 natural scienceslcsh:TechnologyFull Research Paperchemistry.chemical_compoundMoleculeNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Electrical and Electronic Engineeringdonor–acceptorPorositylcsh:ScienceMaterials010405 organic chemistrylcsh:TNanotecnologiafullerenecharge transferSorptionlcsh:QC1-9990104 chemical sciencestetrathiafulvalene (TTF)NanoscienceChemical engineeringchemistryDensity functional theoryMetal-organic frameworklcsh:QMesoporous materialTetrathiafulvalenelcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Modelling of a recirculating photocatalytic microreactor implementing mesoporous N-TiO2 modified with graphene

2020

Abstract The use of microreactors in (photo)catalytic processes offers new possibilities for studying and optimizing many mass and photon transfer limited reactions. In this study, we propose a scalable computational fluid dynamics (CFD) model for the prediction of photocatalytic degradation of a model pollutant (4-nitrophenol) using immobilized N-doped TiO2 grown over reduced graphene oxide (N-TiO2/rGO) in a photocatalytic microreactor working in continuous flow-recirculation mode. The mode of operation used in this study allows the reduction of mass transfer limitations inherent to heterogeneous photocatalytic reactions taking place on immobilized catalysts. A CFD model was developed for …

Materials scienceGeneral Chemical Engineering02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringlaw.inventionCatalysisPhotocatalysiAdsorptionlawMass transferMonolayerEnvironmental ChemistryTotal recirculationSettore ING-IND/24 - Principi Di Ingegneria ChimicaGrapheneGeneral ChemistryCFD modelling021001 nanoscience & nanotechnology0104 chemical sciencesMicroreactorChemical engineeringPhotocatalysisSettore CHIM/07 - Fondamenti Chimici Delle TecnologieMicroreactor0210 nano-technologyMesoporous materialChemical Engineering Journal
researchProduct