Search results for "mesoporous silica"

showing 10 items of 135 documents

Morphology and properties of poly(methyl methacrylate) (PMMA) filled with mesoporous silica (MCM-41) prepared by melt compounding

2016

This paper reports on the morphologies of poly(methyl methacrylate) (PMMA)/mesoporous silica (MCM-41) composites prepared by melt compounding with various MCM-41 contents in the range of 0.1–5 wt%, the interactions between the polymer and filler in these composites, and their thermomechanical, mechanical and thermal degradation properties. The composites formed transparent films at low filler loadings (\0.5 wt%) because of well-dispersed, unagglomerated particles. The presence of polymer did not alter the pore dimensions in the MCM-41 structure and it maintained its hexagonal structure, even though the polymer chains partially penetrated the pores during composite preparation. The PMMA inte…

Materials scienceComposite number02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundMCM-41morphologyGeneral Materials ScienceThermal stabilityMechanics of MaterialComposite materialMethyl methacrylateSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationMechanical EngineeringThermal stabilityPolymerMesoporous silica021001 nanoscience & nanotechnologyPoly(methyl methacrylate)Materials science0104 chemical scienceschemistryMechanics of Materialsvisual_artvisual_art.visual_art_mediumMaterials Science (all)0210 nano-technologyGlass transition
researchProduct

Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays

2005

Abstract In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T= 1.8–300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K.

Materials scienceCondensed matter physicsMagnetometerNanowirechemistry.chemical_elementMesoporous silicaCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundTransition metalchemistrylawThin filmPorous mediumCobaltMagnetiteJournal of Magnetism and Magnetic Materials
researchProduct

Optimization of MCM-41 type silica nanoparticles for biological applications: Control of size and absence of aggregation and cell cytotoxicity

2015

Abstract Mesoporous silica nanoparticles were synthesized at high pH using CTAB as a template and TEOS as a silica precursor. It was shown that varying the NaOH concentration between 5 and 27.5 mM allows the size, pore and silica structure of mesoporous nanoparticles to be precisely tuned. In particular, monodisperse nanoparticles with the MCM-41 structure with size ranging from 90 nm to 450 nm were obtained by increasing the NaOH concentration from 12.5 to 22.5 mM. It thus demonstrates that NaOH concentration must range between 12.5 and 15 mM in order to prepare MCM-41 silica nanoparticles with optimal size for nanovectorization. We also found that under usual conditions the aggregation of…

Materials scienceDispersityExtraction (chemistry)NanoparticleMesoporous silicaCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuspension (chemistry)symbols.namesakeChemical engineeringMCM-41Materials ChemistryCeramics and CompositessymbolsOrganic chemistryRaman spectroscopyMesoporous materialJournal of Non-Crystalline Solids
researchProduct

Effects of Pressure, Thermal Treatment, and O2 Loading in MCM41, MSU-H, and MSU-F Mesoporous Silica Systems Probed by Raman Spectroscopy

2015

We present a Raman study of the effects induced by pressure, thermal treatments, and O2 loading in MCM41, MSU-H, and MSU-F representative mesoporous silica. We compared the starting powders with the mechanically pressed tablets produced applying pressures of ∼0.2 and ∼0.45 GPa. The spectra of the three untreated tablets evidence that the main value of the Si-O-Si angle decreases and that in the MCM41 and the MSU-H Si-O-Si hydrolysis occurs, whereas such a process is absent or much less efficient in the MSU-F. Despite their different networks, the three powders tend to crystallize in cristobalite when treatments are at 1000 °C. The MCM41 and MSU-H tablets exhibit behavior similar to their st…

Materials scienceElectronic Optical and Magnetic MaterialSettore FIS/01 - Fisica SperimentaleMineralogySurfaces Coatings and FilmThermal treatmentMesoporous silicaCristobaliteSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialssymbols.namesakeHydrolysisGeneral EnergyTridymiteEnergy (all)Chemical engineeringPhase (matter)symbolsMoleculePhysical and Theoretical ChemistryRaman spectroscopy
researchProduct

Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material

2008

Abstract Ordered macroporous–mesoporous carbonaceous materials were produced as a direct replica of the Thalassiosira pseudonana diatom by infiltration of the skeleton with furfuryl alcohol. The final carbon-rich material preserves the macropores of the diatom acting as bio-template and new hierarchical macro–mesopores appears as the silica is eliminated through chemical etching. The final solid can be described as an organized array of carbon macrotubes. In order to understand the progressive silica etching and the subsequent effect on the final carbon material, different etching reagents have been used. Moreover, the similar pore topology of T. pseudonana and the well known MCM-41 mesopor…

Materials scienceMacroporebiologyThalassiosira pseudonanaGeneral ChemistryMesoporous silicabiology.organism_classificationIsotropic etchingFurfuryl alcoholchemistry.chemical_compoundDiatomChemical engineeringchemistryReagentGeneral Materials SciencePorous mediumCarbon
researchProduct

Magneto-optical Investigations of Nanostructured Materials Based on Single Molecule Magnets Monitor Strong Environmental Effects

2007

The determination of the magnetic properties of molecular magnets in environments similar to those used in spintronic devices is fundamental for the development of applications. Single-molecule magnets (SMMs) are molecular cluster systems that display magnetic hysteresis of dynamical origin at low temperature. As they behave like perfectly monodisperse nanomagnets and show clear macroscopic quantum effects in their magnetic properties, they are extremely appealing candidates for the forthcoming generation of molecular devices: they have been proposed as efficient systems for quantum computation, ultra-high-density magnetic recording media, and molecular spintronic systems. These attractive …

Materials scienceMagnetismOPTICAL MODESMN12O12(O2CR)(16)(H2O)(4)GOLD SURFACESRELAXATIONNanotechnologySURFACE PHONONSMN-12 NANOMAGNETSCluster (physics)General Materials ScienceThin filmLangmuir-Blodgett filmsSpintronicsMechanical EngineeringMagnetic hysteresisNanomagnetmagnetic hysteresisAmorphous solidIONIC CRYSTAL SLABMESOPOROUS SILICAMagnetic coreMechanics of MaterialsChemical physicsmagnetismcluster compoundsCLUSTERSQUANTUMIONIC CRYSTAL SLAB; MESOPOROUS SILICA; MN-12 NANOMAGNETS; SURFACE PHONONS; OPTICAL MODES; GOLD SURFACES; QUANTUM; MN12O12(O2CR)(16)(H2O)(4); RELAXATION; CLUSTERSLangmuir-Blodgett films; magnetic hysteresis; magnetism; cluster compounds
researchProduct

Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes

1999

Porous materials displaying tailor-made pore sizes and shapes are particularly interesting in a great variety of real and potential applications where molecular recognition is needed, such as shape-selective catalysis, molecular sieving, and selective adsorption. Classically, apart from silica, materials most commonly used for catalysis and catalyst supports have been those based on high surface aluminas, owing to their thermal, chemical, and mechanical stability and their low cost. Earlier aluminas with high surface areas (~500 m/g) had been prepared using structure-directing agents. However, they were X-ray amorphous materials and their porosity was purely textural, characterized by wide …

Materials scienceMechanical EngineeringNanotechnologyMesoporous silicaMicellelaw.inventionChemical engineeringPulmonary surfactantMechanics of MaterialslawSelective adsorptionGeneral Materials ScienceCalcinationThermal stabilityPorosityMesoporous materialAdvanced Materials
researchProduct

Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials

2010

The nanometric organization of MOx (M = Co, Zn, Ni) domains partially embedded inside the mesoporous silica walls but accessible to the pore voids, which is achieved through a simple one-pot surfactant-assisted procedure, define optimal anchors for the nucleation and growth of gold nanoparticles, which in turn favours an exceptional thermal stability for the final Au-supported materials. As silica support we have selected a UVM-7 silica having a highly accessible architecture defined by two hierarchic pore systems. The combination of nanometric pore length, tortuous mesopores and MOx inorganic anchors favours the stability of the final Au/CoOx-UVM-7 nanocomposites.

Materials scienceNanocompositeColloidal goldMaterials ChemistryNucleationNanotechnologyThermal stabilityGeneral ChemistryMesoporous silicaMesoporous materialPorosityMOX fuelJournal of Materials Chemistry
researchProduct

Incorporation of Mn12single molecule magnets into mesoporous silica

2003

The incorporation of four Mn12 derivatives, namely [Mn12O12(O2CR)16(H2O)4] (R = CH3 (1), CH3CH2 (2), C6H5 (3), C6F5 (4)), into the hexagonal channels of the MCM-41 mesoporous silica has been studied. Only the smallest clusters 1 and 2, i.e. those with compatible size with the pores of MCM-41, could enter into the mesoporous silica. Powder X-ray diffraction analysis, HRTEM images and N2 adsorption–desorption isotherm experiments show that the well-ordered hexagonal structure of MCM-41 is preserved and that the Mn12 clusters are inside the pores. The magnetic properties of the MCM-41/2b nanocomposite material obtained in CH2Cl2 indicate that the structure of the cluster is maintained after in…

Materials scienceNanocompositeMineralogyNanoparticleGeneral ChemistryMesoporous silicalaw.inventionMesoporous organosilicachemistry.chemical_compoundchemistryChemical engineeringlawMaterials ChemistryCalcinationCarboxylateMesoporous materialHigh-resolution transmission electron microscopyJ. Mater. Chem.
researchProduct

<title>Metallic and semiconducting nanowires: properties and architectures</title>

2003

Nanowires are expected to play an important role in future electronic, optical devices and nanoelectromechanical devices. Measuring the electrical and mechanical properties of nanowires is however a difficult task due to their small dimensions. Here we report the use of an in-situ microscopy technique, which combines transmission electron microscopy (TEM) with scanning probe microscopy (SPM), to investigate the electrical and mechanical properties of metallic and semiconductor nanowires. Additionally, in this paper we describe a novel approach for synthesizing mesoporous silicas with tunable pore diameters, wall thickness and pore spacings that can be used as tempates for the assembly of se…

Materials scienceNanocompositeSiliconbusiness.industryNanowirechemistry.chemical_elementNanotechnologyGermaniumMesoporous silicaScanning probe microscopySemiconductorchemistryMesoporous materialbusinessSPIE Proceedings
researchProduct