Search results for "mesoscopic"

showing 9 items of 709 documents

Odd triplet superconductivity induced by a moving condensate

2020

It has been commonly accepted that a magnetic field suppresses superconductivity by inducing the ordered motion of Cooper pairs. We demonstrate that a magnetic field can instead provide a generation of superconducting correlations by inducing the motion of a superconducting condensate. This effect arises in superconductor/ferromagnet heterostructures in the presence of Rashba spin-orbital coupling. We predict the odd-frequency spin-triplet superconducting correlations called the Berezinskii order to be switched on at large distances from the superconductor/ferromagnet interface by the application of a magnetic field. This is shown to result in the unusual behavior of Josephson effect and lo…

superconducting phase transitionRashba couplingsuprajohtavuusCondensed Matter::SuperconductivityJosephson effectodd-frequency superconductivityCondensed Matter::Mesoscopic Systems and Quantum Hall Effectmagneettikentätsuperconducting order parametersuprajohteet
researchProduct

Quantum fluctuations in superconducting nanostructures

2014

Modern nanofabrication technology enableTfabrication of very narrow quasi-1-dimensional superconducting nanowires demonstrating finite resistivity within the range of experimentally obtainable temperatures. The observations were reported in ∼10 nm nanowires of certain superconducting materials. The effect has been associated with quantum phase slip process - the particular manifestation of quantum fluctuations of the order p arameter. In titanium, the phenomenon can be observed already at dimensions ∼35 nm where the fabrication is well reproducible and the dimensions of samples can be characterized with high accuracy. We have performed systematic study of the size dependence of transport pr…

superconductorBloch oscillationfluctuationion millingphase sliptitaniumCondensed Matter::Mesoscopic Systems and Quantum Hall Effect1-dimensionalQPS-transistor
researchProduct

Coupling the Higgs mode and ferromagnetic resonance in spin-split superconductors with Rashba spin-orbit coupling

2022

We show that the Higgs mode of superconductors can couple with spin dynamics in the presence of a static spin-splitting field and Rashba spin-orbit coupling. The Higgs-spin coupling dramatically modifies the spin susceptibility near the superconducting critical temperature and consequently enhances the spin pumping effect in a ferromagnetic insulator/superconductor bilayer system. We show that this effect can be detected by measuring the magnon transmission rate and the magnon-induced voltage generated by the inverse spin Hall effect.

suprajohtavuusCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall Effect114 Physical sciencessuprajohteetSuperconductivity (cond-mat.supr-con)spin (kvanttimekaniikka)Condensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated ElectronsohutkalvotmagnetismiPhysical Review B
researchProduct

Implementation techniques for the lattice Boltzmann method

2010

suurteholaskentavirtauslaskentamesoscopic methodsmesoskooppinen alueHila-Boltzmann -menetelmäcomputational fluid dynamicsvirtausdynamiikkalattice Boltzmann methodboundary conditionsalgoritmitcomputer simulationCDFsimulointiHigh performance computingmathematical modellingmatemaattiset mallittietojenkäsittelylaskentamenetelmät
researchProduct

Towards Controlled Synthesis of Water-Soluble Gold Nanoclusters : Synthesis and Analysis

2019

Water-soluble gold nanoclusters with well-defined molecular structures and stability possess particular biophysical properties making them excellent candidates for biological applications as well as for fundamental spectroscopic studies. The currently existing synthetic protocols for atomically monodisperse thiolate-protected gold nanoclusters (AuMPCs) have been widely expanded with organothiolates, yet the direct synthesis reports for water-soluble AuMPCs are still deficient. Here, we demonstrate a wet-chemistry pH-controlled synthesis of two large water-soluble nanoclusters utilizing p-mercaptobenzoic acid (pMBA), affording different sizes of plasmonic AuMPCs on the preparative scale (∼7 …

synthesis02 engineering and technology010402 general chemistry01 natural scienceskultaQuantitative Biology::Cell BehaviorNanoclusterssynteesiPhysical and Theoretical Chemistryta116Condensed Matter::Quantum Gaseskemiallinen synteesita114Condensed Matter::OtherChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsstomatognathic diseasesGeneral EnergyWater solubleChemical engineeringnanohiukkaset0210 nano-technologygold nanoclustersThe Journal of Physical Chemistry C
researchProduct

Long-range spin accumulation from heat injection in mesoscopic superconductors with Zeeman splitting

2015

Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).

ta221General Physics and Astronomy02 engineering and technologyZero field splittingengineering.materialsuperconductorsspin7. Clean energy01 natural sciencessymbols.namesake0103 physical sciencesheat injection010306 general physicsta218Spin-½PhysicsSuperconductivityRange (particle radiation)Mesoscopic physicsZeeman effectta214Condensed matter physicsta114Superconducting wire021001 nanoscience & nanotechnologyThermalisationengineeringsymbols0210 nano-technology
researchProduct

Applications of tunnel junctions in low-dimensional nanostructures

2009

This thesis concentrates on studies of AlOx based tunnel junctions and their feasibility for cooling, thermometry and strain sensing in suspended nanostructures. The main result of the thesis is cooling of one dimensional phonon modes of a suspended nanowire with normal metal insulator superconductor (NIS) tunnel junctions. Simultaneous cooling of both electrons and phonons was achieved, and the lowest phonon temperature reached in the system was 42 mK with an initial temperature of 100 mK. In addition, suspended devices show cooling still at a bath temperature of 600 mK. The observed thermal transport characteristics show, that the heat flow is limited by the scattering of phonons at the b…

thermal annealingtunnel junctionCondensed Matter::Materials ScienceSINIS refrigerationCondensed Matter::Superconductivitystrain sensingCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSINIS thermometer
researchProduct

Investigation of Nonlinear Optical Processes in Mercury Sulfide Quantum Dots

2022

European Regional Development Fund (1.1.1.5/19/A/003), State Assignment to Higher Educational Institutions of Russian Federation (FZGU-2020-0035), Russian Foundation for Basic Research (18-29-20062). Institute of Solid State Physics, University of Latvia as the Center of Excellence acknowledges funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

third-harmonic generationGeneral Chemical Engineeringnonlinear refractionPhysics::OpticsGeneral Materials Science:NATURAL SCIENCES::Physics [Research Subject Categories]quantum dotsnonlinear absorptionCondensed Matter::Mesoscopic Systems and Quantum Hall Effectquantum dots; mercury sulfide; third-harmonic generation; nonlinear refraction; nonlinear absorptionmercury sulfideNanomaterials; Volume 12; Issue 8; Pages: 1264
researchProduct

Erosion, screening, and migration of tungsten in the JET divertor

2019

The erosion of tungsten (W), induced by the bombardment of plasma and impurity particles, determines the lifetime of plasma-facing components as well as impacting on plasma performance by the influx of W into the confined region. The screening of W by the divertor and the transport of W in the plasma determines largely the W content in the plasma core, but the W source strength itself has a vital impact on this process. The JET tokamak experiment provides access to a large set of W erosion-determining parameters and permits a detailed description of the W source in the divertor closest to the ITER one: (i) effective sputtering yields and fluxes as function of impact energy of intrinsic (Be,…

tungsten divertorNuclear and High Energy PhysicsMaterials scienceNuclear engineeringchemistry.chemical_elementTungsten01 natural sciences010305 fluids & plasmaserosion and depositionASDEX UpgradePhysics::Plasma PhysicsImpurity0103 physical sciencesITER divertor010306 general physicsW spectroscopyJet (fluid)DivertorPlasmaequipment and suppliesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsERO modellingchemistryJETPhysics::Space PhysicsErosionPhysics::Accelerator PhysicsAstrophysics::Earth and Planetary Astrophysicsddc:620Nuclear Fusion
researchProduct