Search results for "messenger"

showing 10 items of 1493 documents

Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells.

2015

10 páginas, 5 figuras

0301 basic medicineVascular Endothelial Growth Factor AAngiogenesisretinal pigment epitheliumNeovascularization PhysiologicexosomesBiologyExosomesExosomeCell Line03 medical and health sciencesangiogenesismedicineHuman Umbilical Vein Endothelial CellsHumansRNA MessengerRetinal pigment epitheliumVEGF receptorsTube formationRetinal pigment epitheliumEthanolCell BiologyOriginal ArticlesMicrovesicleseye diseasesCell biologyEndothelial stem cellVascular endothelial growth factor AOxidative Stress030104 developmental biologymedicine.anatomical_structureReceptors Vascular Endothelial Growth FactorOxidative stressCell cultureMolecular MedicineOriginal ArticleAngiogenesissense organsJournal of cellular and molecular medicine
researchProduct

Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress

2016

Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, …

0301 basic medicineX-Box Binding Protein 1Activin Receptors Type IIEukaryotic Initiation Factor-2MyostatinUPRBiochemistryMiceeIF-2 KinaseThioredoxinsSirtuin 1ENDOPLASMIC-RETICULUM STRESSDISULFIDE-ISOMERASEPhosphorylationta315Endoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsIN-VIVOta3141Activin receptorMOUSE MODELER STRESSEndoplasmic Reticulum Stress3. Good healthmedicine.anatomical_structuremyostatinPRESERVES MUSCLE FUNCTIONER-stressSKELETAL-MUSCLEmdxSignal TransductionEXPRESSIONmedicine.medical_specialtyXBP1MDX MICEBiologyProtein Serine-Threonine Kinases03 medical and health sciencesPhysiology (medical)Internal medicineHeat shock proteinPhysical Conditioning AnimalEndoribonucleasesmedicineAnimalsHumansRNA MessengerMuscle SkeletalSkeletal muscleMyostatinGENEActivating Transcription Factor 6Immunoglobulin Fc FragmentsMuscular Dystrophy DuchenneDisease Models Animal030104 developmental biologyProteostasisEndocrinologyGene Expression RegulationUnfolded protein responsebiology.proteinMice Inbred mdxProteostasisUnfolded Protein Response3111 BiomedicineCarrier ProteinsACVR2B
researchProduct

Targeting Nonsense: Optimization of 1,2,4-Oxadiazole TRIDs to Rescue CFTR Expression and Functionality in Cystic Fibrosis Cell Model Systems

2020

Cystic fibrosis (CF) patients develop a severe form of the disease when the cystic fibrosis transmembrane conductance regulator (CFTR) gene is affected by nonsense mutations. Nonsense mutations are responsible for the presence of a premature termination codon (PTC) in the mRNA, creating a lack of functional protein. In this context, translational readthrough-inducing drugs (TRIDs) represent a promising approach to correct the basic defect caused by PTCs. By using computational optimization and biological screening, we identified three new small molecules showing high readthrough activity. The activity of these compounds has been verified by evaluating CFTR expression and functionality after…

0301 basic medicineYellow fluorescent proteinCystic Fibrosisnonsense mutationCystic Fibrosis Transmembrane Conductance RegulatorCystic fibrosislcsh:Chemistry0302 clinical medicinelcsh:QH301-705.5SpectroscopyCells CulturedbiologyChemistryGeneral MedicineSmall moleculeCystic fibrosis transmembrane conductance regulatorComputer Science ApplicationsCell biologyCodon Nonsense030220 oncology & carcinogenesisNonsense mutationContext (language use)Settore BIO/11 - Biologia MolecolareCatalysisArticleInorganic Chemistry03 medical and health sciencesmedicineHumansRNA MessengerPhysical and Theoretical ChemistryMolecular BiologyGeneMessenger RNAOrganic ChemistryoxadiazolesSettore CHIM/06 - Chimica Organicapremature termination codonmedicine.diseaseSettore CHIM/08 - Chimica FarmaceuticaSettore BIO/18 - Genetica030104 developmental biologyGene Expression Regulationlcsh:Biology (General)lcsh:QD1-999translational readthrough inducing drugsProtein BiosynthesisMutationbiology.proteingenetic disorderInternational Journal of Molecular Sciences
researchProduct

Pharmacological disruption of the MID1/α4 interaction reduces mutant Huntingtin levels in primary neuronal cultures.

2017

Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation a…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesHuntingtinMid1 protein mouseProtein subunitUbiquitin-Protein LigasesMutantPrimary Cell CulturePeptide03 medical and health sciencesMiceHuntington's diseasemental disordersmedicineAnimalsHumansHtt protein mouseddc:610Protein Phosphatase 2Neuronschemistry.chemical_classificationMessenger RNAHuntingtin ProteinbiologyChemistryGeneral NeuroscienceProteinsgenetics [Huntingtin Protein]metabolism [Protein Phosphatase 2]metabolism [Proteins]Protein phosphatase 2medicine.diseaseUbiquitin ligaseCell biology030104 developmental biologyHEK293 Cellsmetabolism [Neurons]metabolism [Huntingtin Protein]Mutationbiology.proteinProtein Binding
researchProduct

Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells.

2015

Abstract Background: Unfolded protein responses (UPR) determine cell fate and are recognized as anticancer targets. In a previous research, we reported that cryptotanshinone (CPT) exerted cytotoxic effects toward acute lymphoblastic leukemia cells through mitochondria-mediated apoptosis. Purpose: In the present study, we further investigated the role of UPR in CPT-induced cytotoxicity on acute lymphoblastic leukemia cells by applying tools of pharmacogenomics and bioinformatics. Methods: Gene expression profiling was performed by mRNA microarray hybridization. Potential transcription factor binding motifs were identified in the promoter regions of the deregulated genes by Cistrome software.…

0301 basic medicineendocrine systemXBP1Eukaryotic Initiation Factor-2Pharmaceutical ScienceApoptosisBiology03 medical and health sciencesPhosphatidylinositol 3-KinasesEukaryotic initiation factorCell Line TumorDrug DiscoveryHumansheterocyclic compoundsRNA MessengerEukaryotic Initiation FactorsTranscription factorPharmacologyeIF2ATF4Computational BiologyPromoterPhenanthrenesPrecursor Cell Lymphoblastic Leukemia-LymphomaMolecular Docking Simulation030104 developmental biologyComplementary and alternative medicineCistromePharmacogeneticsEukaryotic Initiation Factor-4AUnfolded protein responseCancer researchUnfolded Protein ResponseMolecular MedicineTranscription Factor CHOPSignal TransductionTranscription FactorsPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

miRNAs Regulation and Its Role as Biomarkers in Endometriosis.

2016

MicroRNAs (miRNAs) are small non-coding RNAs (18-22 nt) that function as modulators of gene expression. Since their discovery in 1993 in C. elegans, our knowledge about their biogenesis, function, and mechanism of action has increased enormously, especially in recent years, with the development of deep-sequencing technologies. New biogenesis pathways and sources of miRNAs are changing our concept about these molecules. The study of the miRNA contribution to pathological states is a field of great interest in research. Different groups have reported the implication of miRNAs in pathologies such as cancer, diabetes, cardiovascular, and gynecological diseases. It is also well-known that miRNAs…

0301 basic medicineendometriosisnon-coding RNAEndometriosisReviewBioinformaticsCatalysisInorganic Chemistrylcsh:Chemistry03 medical and health sciencesEndometriumRNA TransfermicroRNARNA Small CytoplasmicMedicineHumansRNA MessengerPhysical and Theoretical ChemistryRNA Small InterferingMolecular Biologylcsh:QH301-705.5SpectroscopyRegulation of gene expressionmicroRNAbusiness.industryOrganic ChemistryCancerGeneral Medicinemedicine.diseaseNon-coding RNAComputer Science ApplicationsMicroRNAs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Gene Expression RegulationGinecologiaBiomarker (medicine)biomarkerFemalebusinessBiogenesisFunction (biology)Biomarkers
researchProduct

Functional differences between l- and d-carnitine in metabolic regulation evaluated using a low-carnitine Nile tilapia model.

2019

Abstractl-Carnitine is essential for mitochondrialβ-oxidation and has been used as a lipid-lowering feed additive in humans and farmed animals.d-Carnitine is an optical isomer ofl-carnitine anddl-carnitine has been widely used in animal feeds. However, the functional differences betweenl- andd-carnitine are difficult to study because of the endogenousl-carnitine background. In the present study, we developed a low-carnitine Nile tilapia model by treating fish with a carnitine synthesis inhibitor, and used this model to investigate the functional differences betweenl- andd-carnitine in nutrient metabolism in fish.l- ord-carnitine (0·4 g/kg diet) was fed to the low-carnitine tilapia for 6 wee…

0301 basic medicinefood.ingredientProtein metabolismMedicine (miscellaneous)Apoptosis03 medical and health scienceschemistry.chemical_compoundNile tilapiaCarnitine palmitoyltransferase 1foodCarnitinemedicineAnimalsMetabolomicsCarnitineRNA MessengerNutrition and DieteticsbiologyProteinsTilapiaStereoisomerism04 agricultural and veterinary sciencesbiology.organism_classificationAnimal FeedCitric acid cycleMetabolic pathwayOxidative Stress030104 developmental biologyGlucosechemistryLipotoxicityBiochemistryLiverModels Animal040102 fisheries0401 agriculture forestry and fisheriesOxidation-Reductionmedicine.drugTilapiaThe British journal of nutrition
researchProduct

Extracellular Vesicle‐Associated RNA as a Carrier of Epigenetic Information

2017

Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5'- and 3'-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally tran…

0301 basic medicinelcsh:QH426-470mRNAnon‐coding RNA (ncRNA)RNA-binding proteinReviewBiology03 medical and health sciencesRNA‐binding proteins (RBPs)Settore BIO/10 - Biochimicanon-coding RNA (ncRNA)Gene expressionGeneticsSettore BIO/06 - Anatomia Comparata E CitologiaTranscription factorGenetics (clinical)GeneticsmRNA; non-coding RNA(ncRNA); RNA-binding proteins (RBPs); extracellular vesicles (EVs)Messenger RNARNATranslation (biology)Extracellular vesicleCell biologyChromatinlcsh:Genetics030104 developmental biologyRNA-binding proteins (RBPs)extracellular vesicles (EVs)non-coding RNA(ncRNA)Genes
researchProduct

Long Non-coding Antisense RNA TNRC6C-AS1 Is Activated in Papillary Thyroid Cancer and Promotes Cancer Progression by Suppressing TNRC6C Expression

2018

Context: Evidences have shown the important role of long non-coding antisense RNAs in regulating its cognate sense gene in cancer biology. Objective: Investigate the regulatory role of a long non-coding antisense RNA TNRC6C-AS1 on its sense partner TNRC6C, and their effects on the aggressiveness and iodine-uptake ability of papillary thyroid cancer (PTC). Design: TNRC6C-AS1 was identified as the target long non-coding RNA in PTC by using microarray analysis and computational analysis. In vitro gain/loss-of-function experiments were performed to investigate the effects of TNRC6C-AS1 and TNRC6C on proliferation, apoptosis, migration, invasion and iodine-uptake ability of TPC1 cells. Expressio…

0301 basic medicinelong non-coding antisense RNAendocrine system diseasesEndocrinology Diabetes and MetabolismTNRC6C-AS1lcsh:Diseases of the endocrine glands. Clinical endocrinologyPapillary thyroid cancer03 medical and health sciencesEndocrinology0302 clinical medicineDownregulation and upregulationSense (molecular biology)medicinepapillary thyroid cancerTNRC6COriginal Researchiodine accumulationGene knockdownMessenger RNAlcsh:RC648-665ChemistryMicroarray analysis techniquesRNAmedicine.diseaseAntisense RNA030104 developmental biology030220 oncology & carcinogenesisCancer researchFrontiers in Endocrinology
researchProduct

Inactivation of the KSRP gene modifies collagen antibody induced arthritis.

2017

Abstract The KH type splicing regulatory protein (KSRP) is a nucleic acid binding protein, which negatively regulates the stability and/or translatability of many mRNA species encoding immune-relevant proteins. As KSRP is expressed in immune cells including T and B cells, neutrophils, macrophages and dendritic cells, we wanted to analyze its importance for the development of autoimmune diseases. We chose collagen antibody-induced arthritis (CAIA) as an appropriate autoimmune disease mouse model in which neutrophils and macrophages constitute the main effector cell populations. We compared arthritis induction in wild type (WT) and KSRP−/− mice and paws were taken for histological sections an…

0301 basic medicinemedicine.drug_classmedicine.medical_treatmentInflammatory arthritisChemokine CXCL1ImmunologyArthritisAntigens Differentiation MyelomonocyticNitric Oxide Synthase Type IISpleenBiologyMonoclonal antibodyPeripheral blood mononuclear cellAntibodiesFlow cytometry03 medical and health sciencesInterferon-gammaMiceImmune systemAntigens CDmedicineAnimalsAntigens LyCalgranulin ARNA MessengerMolecular BiologyInflammationmedicine.diagnostic_testTumor Necrosis Factor-alphaMacrophagesRNA-Binding Proteinsmedicine.diseaseMolecular biologyArthritis ExperimentalLymphocyte Function-Associated Antigen-1Mice Inbred C57BL030104 developmental biologyCytokinemedicine.anatomical_structureImmunologyTrans-ActivatorsCytokinesCollagenMolecular immunology
researchProduct