Search results for "meta-optimization"

showing 10 items of 14 documents

Applications of Evolutionary Computation

2011

EvoCOMPLEX Contributions.- Coevolutionary Dynamics of Interacting Species.- Evolving Individual Behavior in a Multi-agent Traffic Simulator.- On Modeling and Evolutionary Optimization of Nonlinearly Coupled Pedestrian Interactions.- Revising the Trade-off between the Number of Agents and Agent Intelligence.- Sexual Recombination in Self-Organizing Interaction Networks.- Symbiogenesis as a Mechanism for Building Complex Adaptive Systems: A Review.- EvoGAMES Contributions.- Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game.- Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection.- An Evolutionary Approach for Solving the Rubik's Cube Incorporating Exact Met…

020301 aerospace & aeronauticsMeta-optimizationbusiness.industryComputer scienceComputer Science::Neural and Evolutionary ComputationEvolutionary algorithm020206 networking & telecommunicationsGenetic programming02 engineering and technologyEvolutionary computation0203 mechanical engineeringEstimation of distribution algorithmGrammatical evolutionGenetic algorithm0202 electrical engineering electronic engineering information engineeringArtificial intelligenceCMA-ESbusiness
researchProduct

Fuzzy predictive controller design using ant colony optimization algorithm

2014

In this paper, an approach for designing an adaptive fuzzy model predictive control (AFMPC) based on the Ant Colony Optimization (ACO) is studied. On-line adaptive fuzzy identification is used to identify the system parameters. These parameters are used to calculate the objective function based on predictive approach and structure of RST control. The optimization problem is solved based on an ACO algorithm, used at the optimization process in AFMPC to calculate a sequence of future RST control actions. The obtained simulation results show that proposed approach provides better results compared with Proportional Integral-Ant Colony Optimization (PI-ACO) controller and adaptive fuzzy model pr…

EngineeringMeta-optimizationOptimization problemLinear programmingbusiness.industryAnt colony optimization algorithmsComputer Science Applications1707 Computer Vision and Pattern RecognitionComputingMethodologies_ARTIFICIALINTELLIGENCEFuzzy logicModel predictive controlControl theoryControl and Systems EngineeringModeling and SimulationModeling and Simulation; Computer Science Applications1707 Computer Vision and Pattern Recognition; Control and Systems Engineering; Electrical and Electronic EngineeringElectrical and Electronic EngineeringbusinessAlgorithmMetaheuristic
researchProduct

An integrated fuzzy cells-classifier

2007

This paper introduces a genetic algorithm able to combine different classifiers based on different distance functions. The use of a genetic algorithm is motivated by the fact that the combination phase is based on the optimization of a vote strategy. The method has been applied to the classification of four types of biological cells, results show an improvement of the recognition rate using the genetic algorithm combination strategy compared with the recognition rate of each single classifier.

Fuzzy classificationMeta-optimizationbusiness.industryPopulation-based incremental learningFuzzy setPattern recognitionMultiple classifiersMachine learningcomputer.software_genreFuzzy logicClusteringComputingMethodologies_PATTERNRECOGNITIONGenetic algorithmSignal ProcessingGenetic algorithmClassifier fusionFuzzy setComputer Vision and Pattern RecognitionArtificial intelligenceCluster analysisbusinessClassifier (UML)computerMathematics
researchProduct

An ant colony optimization-based fuzzy predictive control approach for nonlinear processes

2015

In this paper, a new approach for designing an adaptive fuzzy model predictive control (AFMPC) based on the ant colony optimization (ACO) is proposed. On-line adaptive fuzzy identification is introduced to identify the system parameters. These parameters are used to calculate the objective function based on a predictive approach and structure of RST control. Then the optimization problem is solved based on an ACO algorithm, used at the optimization process in AFMPC to determine optimal controller parameters of RST control. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, where the proposed approach provides better performances compared with p…

Information Systems and ManagementMeta-optimizationOptimization problemComputer scienceAnt colony optimization algorithmsComputer Science::Neural and Evolutionary ComputationProcess (computing)Computer Science ApplicationsTheoretical Computer ScienceNonlinear systemModel predictive controlArtificial IntelligenceControl and Systems EngineeringControl theoryMetaheuristicSoftwareInformation Sciences
researchProduct

Improving Computing Systems Automatic Multiobjective Optimization Through Meta-Optimization

2016

This paper presents the extension of framework for automatic design space exploration (FADSE) tool using a meta-optimization approach, which is used to improve the performance of design space exploration algorithms, by driving two different multiobjective meta-heuristics concurrently. More precisely, we selected two genetic multiobjective algorithms: 1) non-dominated sorting genetic algorithm-II and 2) strength Pareto evolutionary algorithm 2, that work together in order to improve both the solutions’ quality and the convergence speed. With the proposed improvements, we ran FADSE in order to optimize the hardware parameters’ values of the grid ALU processor (GAP) micro-architecture from a b…

Mathematical optimizationMeta-optimizationComputer scienceCycles per instructionDesign space explorationPareto principleSortingEvolutionary algorithm02 engineering and technologyComputer Graphics and Computer-Aided DesignMulti-objective optimization020202 computer hardware & architecture0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAlgorithm designElectrical and Electronic EngineeringSoftwareIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
researchProduct

Pareto-optimal Glowworm Swarms Optimization for Smart Grids Management

2013

This paper presents a novel nature-inspired multi-objective optimization algorithm. The method extends the glowworm swarm particles optimization algorithm with algorithmical enhancements which allow to identify optimal pareto front in the objectives space. In addition, the system allows to specify constraining functions which are needed in practical applications. The framework has been applied to the power dispatch problem of distribution systems including Distributed Energy Resources (DER). Results for the test cases are reported and discussed elucidating both numerical and complexity analysis.

Mathematical optimizationMeta-optimizationComputer scienceDerivative-free optimizationTest functions for optimizationSwarm behaviourMulti-swarm optimizationevolutionary optimization swarm-optimization pareto optimization micro-gridsMulti-objective optimizationMetaheuristicEngineering optimization
researchProduct

Simultaneous and multi-criteria optimization of TS requirements and maintenance at NPPs

2002

Abstract One of the main concerns of the nuclear industry is to improve the availability of safety-related systems at nuclear power plants (NPPs) to achieve high safety levels. The development of efficient testing and maintenance has been traditionally one of the different ways to guarantee high levels of systems availability, which are implemented at NPP through technical specification and maintenance requirements (TS&M). On the other hand, there is a widely recognized interest in using the probabilistic risk analysis (PRA) for risk-informed applications aimed to emphasize both effective risk control and effective resource expenditures at NPPs. TS&M-related parameters in a plant are associ…

Mathematical optimizationMeta-optimizationOptimization problemNuclear Energy and EngineeringComputer scienceProbabilistic-based design optimizationMulti-swarm optimizationMulti-objective optimizationBilevel optimizationMetaheuristicEngineering optimizationAnnals of Nuclear Energy
researchProduct

Memetic Variation Local Search vs. Life-Time Learning in Electrical Impedance Tomography

2009

In this article, various metaheuristics for a numerical optimization problem with application to Electric Impedance Tomography are tested and compared. The experimental setup is composed of a real valued Genetic Algorithm, the Differential Evolution, a self adaptive Differential Evolution recently proposed in literature, and two novel Memetic Algorithms designed for the problem under study. The two proposed algorithms employ different algorithmic philosophies in the field of Memetic Computing. The first algorithm integrates a local search into the operations of the offspring generation, while the second algorithm applies a local search to individuals already generated in the spirit of life-…

Mathematical optimizationMeta-optimizationOptimization problembusiness.industryFitness landscapeDifferential evolutionComputer Science::Neural and Evolutionary ComputationGenetic algorithmMemetic algorithmLocal search (optimization)businessMetaheuristicMathematics
researchProduct

A novel abstraction for swarm intelligence: particle field optimization

2016

Particle swarm optimization (PSO) is a popular meta-heuristic for black-box optimization. In essence, within this paradigm, the system is fully defined by a swarm of "particles" each characterized by a set of features such as its position, velocity and acceleration. The consequent optimized global best solution is obtained by comparing the personal best solutions of the entire swarm. Many variations and extensions of PSO have been developed since its creation in 1995, and the algorithm remains a popular topic of research. In this work we submit a new, abstracted perspective of the PSO system, where we attempt to move away from the swarm of individual particles, but rather characterize each …

Mathematical optimizationMeta-optimizationbusiness.industryComputer scienceComputingMethodologies_MISCELLANEOUSComputer Science::Neural and Evolutionary ComputationParticle swarm optimizationSwarm behaviour02 engineering and technology010502 geochemistry & geophysics01 natural sciencesSwarm intelligenceField (computer science)Artificial Intelligence0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceMulti-swarm optimizationbusinessMetaheuristic0105 earth and related environmental sciencesAbstraction (linguistics)Autonomous Agents and Multi-Agent Systems
researchProduct

2014

This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs). Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization) algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifica…

Meta-optimizationComputer engineeringComputer sciencelawRobustness (computer science)General MathematicsGenetic algorithmGeneral EngineeringEvolutionary algorithmParticle swarm optimizationIntegrated circuitAlgorithmlaw.inventionMathematical Problems in Engineering
researchProduct